Intraflagellar Transport

Jonathan M. Scholey

Research output: Contribution to journalArticle

309 Scopus citations

Abstract

It has been a decade since a novel form of microtubule (MT)-based motility, i.e., intraflagellar transport (IFT), was discovered in Chlamydomonas flagella. Subsequent research has supported the hypothesis that IFT is required for the assembly and maintenance of all cilia and flagella and that its underlying mechanism involves the transport of nonmembrane-bound macromolecular protein complexes (IFT particles) along axonemal MTs beneath the ciliary membrane. IFT requires the action of the anterograde kinesin-II motors and the retrograde IFT-dynein motors to transport IFT particles in opposite directions along the MT polymer lattice from the basal body to the tip of the axoneme and back again. A rich diversity of biological processes has been shown to depend upon IFT, including flagellar length control, cell swimming, mating and feeding, photoreception, animal development, sensory perception, chemosensory behavior, and lifespan control. These processes reflect the varied roles of cilia and flagella in motility and sensory signaling.

Original languageEnglish (US)
Pages (from-to)423-443
Number of pages21
JournalAnnual Review of Cell and Developmental Biology
Volume19
DOIs
StatePublished - 2003

Keywords

  • Cilia
  • Flagella
  • IFT-dynein
  • Kinesin-II
  • Motility
  • Sensory signaling

ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Intraflagellar Transport'. Together they form a unique fingerprint.

  • Cite this