Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate

Scott A. Troxel, Harmeet Sidhu, Poonam Kaul, Roger Low

Research output: Contribution to journalArticle

90 Scopus citations


Background and Purpose: Oxalobacter formigenes is an anaerobic commensal colonic bacterium capable of degrading oxalate through the enzyme oxalyl-CoA decarboxylase. It has been theorized that individuals who lack this bacterium have higher intestinal oxalate absorption, leading to a higher urinary oxalate concentration and an increased risk of calcium oxalate urolithiasis. We performed a prospective, controlled study to evaluate O. formigenes colonization in calcium oxalate stone formers and to correlate colonization with urinary oxalate and other standard urinary stone risk factors. Patients and Methods: Thirty-five first-time calcium oxalate stone formers were compared with 10 control subjects having no history of urolithiasis and a normal renal ultrasound scan. All subjects underwent standard metabolic testing by submitting serum and 24-hour urine specimens. In addition, all subjects submitted stool samples for culture and detection of O. formigenes by Xentrix O. formigenes Monitor. Results: Intestinal Oxalobacter was detected in only 26% of the stone formers compared with 60% of the controls (p < 0.05). Overall, the average urinary oxalate excretion by the two groups was similar (38.6 mg/day v 40.8 mg/day). Among stone formers, however, there were statistically higher urinary oxalate concentrations in O. formigenes-negative patients compared with those testing positive (41.7 mg/day v 29.4 mg/day) (p = 0.03). Furthermore, all 10 stone formers with hyperoxaluria (>44 mg/day) tested negative for O. formigenes (p < 0.05). Conclusions: Calcium oxalate stone formers have a low rate of colonization with O. formigenes. Among stone formers, absence of intestinal Oxalobacter correlates with higher urinary oxalate concentration and an increased risk of hyperoxaluria. Introduction of the Oxalobacter bacterium or an analog of its enzyme oxalyl-CoA decarboxylase into the intestinal tract may be a treatment for calcium oxalate stone disease.

Original languageEnglish (US)
Pages (from-to)173-176
Number of pages4
JournalJournal of Endourology
Issue number3
StatePublished - Apr 2003


ASJC Scopus subject areas

  • Urology

Cite this