Innate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF-α, and IL-1β

Jill Tseng, Jiun Do, Jonathan Widdicombe, Terry E. Machen

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-κB and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-κB in columnar but not basal cells. IL-1β + TNF-α elicited responses similar to those of flagellin. Basolateral flagellin or IL-1β + TNF-α caused 1.5- to 4-fold larger responses, consistent with the fact that NF-κB activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF-α receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1β + TNF-α in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1β, and TNF-́ do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1β, and TNF-α.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume290
Issue number3
DOIs
StatePublished - Mar 2006

Fingerprint

Flagellin
Interleukin-1
Innate Immunity
Pseudomonas aeruginosa
Epithelium
Cells
Interleukin-1 Receptors
Tight Junctions
Toll-Like Receptor 5
Receptors, Tumor Necrosis Factor, Type I
Cell signaling
Tumor Necrosis Factor Receptors
Epithelial Cells
Liquids
Interleukin-8
Chemical activation

Keywords

  • Interleukin-1
  • Interleukin-8
  • Nuclear factor-κB
  • Toll-like receptor
  • Tumor necrosis factor

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology

Cite this

Innate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF-α, and IL-1β. / Tseng, Jill; Do, Jiun; Widdicombe, Jonathan; Machen, Terry E.

In: American Journal of Physiology - Cell Physiology, Vol. 290, No. 3, 03.2006.

Research output: Contribution to journalArticle

@article{6df5fd0eabb14dff979ac9e7d3c22d30,
title = "Innate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF-α, and IL-1β",
abstract = "We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-κB and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-κB in columnar but not basal cells. IL-1β + TNF-α elicited responses similar to those of flagellin. Basolateral flagellin or IL-1β + TNF-α caused 1.5- to 4-fold larger responses, consistent with the fact that NF-κB activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF-α receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1β + TNF-α in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1β, and TNF-́ do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1β, and TNF-α.",
keywords = "Interleukin-1, Interleukin-8, Nuclear factor-κB, Toll-like receptor, Tumor necrosis factor",
author = "Jill Tseng and Jiun Do and Jonathan Widdicombe and Machen, {Terry E.}",
year = "2006",
month = "3",
doi = "10.1152/ajpcell.00166.2005",
language = "English (US)",
volume = "290",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Innate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF-α, and IL-1β

AU - Tseng, Jill

AU - Do, Jiun

AU - Widdicombe, Jonathan

AU - Machen, Terry E.

PY - 2006/3

Y1 - 2006/3

N2 - We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-κB and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-κB in columnar but not basal cells. IL-1β + TNF-α elicited responses similar to those of flagellin. Basolateral flagellin or IL-1β + TNF-α caused 1.5- to 4-fold larger responses, consistent with the fact that NF-κB activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF-α receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1β + TNF-α in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1β, and TNF-́ do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1β, and TNF-α.

AB - We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-κB and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-κB in columnar but not basal cells. IL-1β + TNF-α elicited responses similar to those of flagellin. Basolateral flagellin or IL-1β + TNF-α caused 1.5- to 4-fold larger responses, consistent with the fact that NF-κB activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF-α receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1β + TNF-α in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1β, and TNF-́ do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1β, and TNF-α.

KW - Interleukin-1

KW - Interleukin-8

KW - Nuclear factor-κB

KW - Toll-like receptor

KW - Tumor necrosis factor

UR - http://www.scopus.com/inward/record.url?scp=33645454457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645454457&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00166.2005

DO - 10.1152/ajpcell.00166.2005

M3 - Article

C2 - 16251478

AN - SCOPUS:33645454457

VL - 290

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -