Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification

Matthew T. Sorbara, Krista Dubin, Eric R. Littmann, Thomas U. Moody, Emily Fontana, Ruth Seok, Ingrid M. Leiner, Ying Taur, Jonathan U. Peled, Marcel R.M. Van Den Brink, Yael Litvak, Andreas J Baumler, Jean Luc Chaubard, Amanda J. Pickard, Justin R. Cross, Eric G. Pamer

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Klebsiella pneumoniae, Escherichia coli, and other members of the Enterobacteriaceae family are common human pathogens that have acquired broad antibiotic resistance, rendering infection by some strains virtually untreatable. Enterobacteriaceae are intestinal residents, but generally represent <1% of the adult colonic microbiota. Antibiotic-mediated destruction of the microbiota enables Enterobacteriaceae to expand to high densities in the colon, markedly increasing the risk of bloodstream invasion, sepsis, and death. Here, we demonstrate that an antibiotic-naive microbiota suppresses growth of antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)–mediated intracellular acidification. High concentrations of SCFAs and the acidic environment counter the competitive edge that O 2 and NO 3 respiration confer upon Enterobacteriaceae during expansion. Reestablishment of a microbiota that produces SCFAs enhances clearance of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis from the intestinal lumen and represents a potential therapeutic approach to enhance clearance of antibiotic-resistant pathogens.

Original languageEnglish (US)
Pages (from-to)84-98
Number of pages15
JournalJournal of Experimental Medicine
Volume216
Issue number1
DOIs
StatePublished - Jan 1 2019
Externally publishedYes

Fingerprint

Microbiota
Enterobacteriaceae
Klebsiella pneumoniae
Anti-Bacterial Agents
Proteus mirabilis
Escherichia coli
Colon
Volatile Fatty Acids
Microbial Drug Resistance
Sepsis
Respiration
Growth
Infection
Therapeutics

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this

Sorbara, M. T., Dubin, K., Littmann, E. R., Moody, T. U., Fontana, E., Seok, R., ... Pamer, E. G. (2019). Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. Journal of Experimental Medicine, 216(1), 84-98. https://doi.org/10.1084/jem.20181639

Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. / Sorbara, Matthew T.; Dubin, Krista; Littmann, Eric R.; Moody, Thomas U.; Fontana, Emily; Seok, Ruth; Leiner, Ingrid M.; Taur, Ying; Peled, Jonathan U.; Van Den Brink, Marcel R.M.; Litvak, Yael; Baumler, Andreas J; Chaubard, Jean Luc; Pickard, Amanda J.; Cross, Justin R.; Pamer, Eric G.

In: Journal of Experimental Medicine, Vol. 216, No. 1, 01.01.2019, p. 84-98.

Research output: Contribution to journalArticle

Sorbara, MT, Dubin, K, Littmann, ER, Moody, TU, Fontana, E, Seok, R, Leiner, IM, Taur, Y, Peled, JU, Van Den Brink, MRM, Litvak, Y, Baumler, AJ, Chaubard, JL, Pickard, AJ, Cross, JR & Pamer, EG 2019, 'Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification', Journal of Experimental Medicine, vol. 216, no. 1, pp. 84-98. https://doi.org/10.1084/jem.20181639
Sorbara, Matthew T. ; Dubin, Krista ; Littmann, Eric R. ; Moody, Thomas U. ; Fontana, Emily ; Seok, Ruth ; Leiner, Ingrid M. ; Taur, Ying ; Peled, Jonathan U. ; Van Den Brink, Marcel R.M. ; Litvak, Yael ; Baumler, Andreas J ; Chaubard, Jean Luc ; Pickard, Amanda J. ; Cross, Justin R. ; Pamer, Eric G. / Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. In: Journal of Experimental Medicine. 2019 ; Vol. 216, No. 1. pp. 84-98.
@article{97ef75118bd44f5dae7eeea35fbefea8,
title = "Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification",
abstract = "Klebsiella pneumoniae, Escherichia coli, and other members of the Enterobacteriaceae family are common human pathogens that have acquired broad antibiotic resistance, rendering infection by some strains virtually untreatable. Enterobacteriaceae are intestinal residents, but generally represent <1{\%} of the adult colonic microbiota. Antibiotic-mediated destruction of the microbiota enables Enterobacteriaceae to expand to high densities in the colon, markedly increasing the risk of bloodstream invasion, sepsis, and death. Here, we demonstrate that an antibiotic-naive microbiota suppresses growth of antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)–mediated intracellular acidification. High concentrations of SCFAs and the acidic environment counter the competitive edge that O 2 and NO 3 respiration confer upon Enterobacteriaceae during expansion. Reestablishment of a microbiota that produces SCFAs enhances clearance of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis from the intestinal lumen and represents a potential therapeutic approach to enhance clearance of antibiotic-resistant pathogens.",
author = "Sorbara, {Matthew T.} and Krista Dubin and Littmann, {Eric R.} and Moody, {Thomas U.} and Emily Fontana and Ruth Seok and Leiner, {Ingrid M.} and Ying Taur and Peled, {Jonathan U.} and {Van Den Brink}, {Marcel R.M.} and Yael Litvak and Baumler, {Andreas J} and Chaubard, {Jean Luc} and Pickard, {Amanda J.} and Cross, {Justin R.} and Pamer, {Eric G.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1084/jem.20181639",
language = "English (US)",
volume = "216",
pages = "84--98",
journal = "Journal of Experimental Medicine",
issn = "0022-1007",
publisher = "Rockefeller University Press",
number = "1",

}

TY - JOUR

T1 - Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification

AU - Sorbara, Matthew T.

AU - Dubin, Krista

AU - Littmann, Eric R.

AU - Moody, Thomas U.

AU - Fontana, Emily

AU - Seok, Ruth

AU - Leiner, Ingrid M.

AU - Taur, Ying

AU - Peled, Jonathan U.

AU - Van Den Brink, Marcel R.M.

AU - Litvak, Yael

AU - Baumler, Andreas J

AU - Chaubard, Jean Luc

AU - Pickard, Amanda J.

AU - Cross, Justin R.

AU - Pamer, Eric G.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Klebsiella pneumoniae, Escherichia coli, and other members of the Enterobacteriaceae family are common human pathogens that have acquired broad antibiotic resistance, rendering infection by some strains virtually untreatable. Enterobacteriaceae are intestinal residents, but generally represent <1% of the adult colonic microbiota. Antibiotic-mediated destruction of the microbiota enables Enterobacteriaceae to expand to high densities in the colon, markedly increasing the risk of bloodstream invasion, sepsis, and death. Here, we demonstrate that an antibiotic-naive microbiota suppresses growth of antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)–mediated intracellular acidification. High concentrations of SCFAs and the acidic environment counter the competitive edge that O 2 and NO 3 respiration confer upon Enterobacteriaceae during expansion. Reestablishment of a microbiota that produces SCFAs enhances clearance of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis from the intestinal lumen and represents a potential therapeutic approach to enhance clearance of antibiotic-resistant pathogens.

AB - Klebsiella pneumoniae, Escherichia coli, and other members of the Enterobacteriaceae family are common human pathogens that have acquired broad antibiotic resistance, rendering infection by some strains virtually untreatable. Enterobacteriaceae are intestinal residents, but generally represent <1% of the adult colonic microbiota. Antibiotic-mediated destruction of the microbiota enables Enterobacteriaceae to expand to high densities in the colon, markedly increasing the risk of bloodstream invasion, sepsis, and death. Here, we demonstrate that an antibiotic-naive microbiota suppresses growth of antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)–mediated intracellular acidification. High concentrations of SCFAs and the acidic environment counter the competitive edge that O 2 and NO 3 respiration confer upon Enterobacteriaceae during expansion. Reestablishment of a microbiota that produces SCFAs enhances clearance of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis from the intestinal lumen and represents a potential therapeutic approach to enhance clearance of antibiotic-resistant pathogens.

UR - http://www.scopus.com/inward/record.url?scp=85059927753&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059927753&partnerID=8YFLogxK

U2 - 10.1084/jem.20181639

DO - 10.1084/jem.20181639

M3 - Article

VL - 216

SP - 84

EP - 98

JO - Journal of Experimental Medicine

JF - Journal of Experimental Medicine

SN - 0022-1007

IS - 1

ER -