In vitro and in vivo GABAA Receptor Interaction of the Propanidid Metabolite 4-(2-[Diethylamino]-2-Oxoethoxy)-3-Methoxy-Benzeneacetic Acid

Research output: Contribution to journalArticle

Abstract

Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on -GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2-10 mmol/L) and propanidid (0.001-1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received -DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5-10 and 0.5-10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.

Original languageEnglish (US)
Pages (from-to)10-16
Number of pages7
JournalPharmacology
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Phenylacetates
Propanidid
GABA-A Receptors
Oocytes
In Vitro Techniques
GABA-A Receptor Agonists
Aminobutyrates
General Anesthetics
Patch-Clamp Techniques
Tandem Mass Spectrometry
Liquid Chromatography
Solubility
gamma-Aminobutyric Acid
Nervous System

Keywords

  • DOMBA
  • GABA receptor
  • Propanidid

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{74ec23ef6dc446eeb34eeb9c0374bf42,
title = "In vitro and in vivo GABAA Receptor Interaction of the Propanidid Metabolite 4-(2-[Diethylamino]-2-Oxoethoxy)-3-Methoxy-Benzeneacetic Acid",
abstract = "Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on -GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2-10 mmol/L) and propanidid (0.001-1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received -DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5-10 and 0.5-10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.",
keywords = "DOMBA, GABA receptor, Propanidid",
author = "Alessia Cenani and Brosnan, {Robert J} and Knych, {Heather K}",
year = "2018",
month = "1",
day = "1",
doi = "10.1159/000493753",
language = "English (US)",
pages = "10--16",
journal = "Pharmacology",
issn = "0031-7012",
publisher = "S. Karger AG",

}

TY - JOUR

T1 - In vitro and in vivo GABAA Receptor Interaction of the Propanidid Metabolite 4-(2-[Diethylamino]-2-Oxoethoxy)-3-Methoxy-Benzeneacetic Acid

AU - Cenani, Alessia

AU - Brosnan, Robert J

AU - Knych, Heather K

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on -GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2-10 mmol/L) and propanidid (0.001-1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received -DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5-10 and 0.5-10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.

AB - Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on -GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2-10 mmol/L) and propanidid (0.001-1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received -DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5-10 and 0.5-10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.

KW - DOMBA

KW - GABA receptor

KW - Propanidid

UR - http://www.scopus.com/inward/record.url?scp=85055247852&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055247852&partnerID=8YFLogxK

U2 - 10.1159/000493753

DO - 10.1159/000493753

M3 - Article

C2 - 30332672

AN - SCOPUS:85055247852

SP - 10

EP - 16

JO - Pharmacology

JF - Pharmacology

SN - 0031-7012

ER -