In-gel nonspecific proteolysis for elucidating glycoproteins: A method for targeted protein-specific glycosylation analysis in complex protein mixtures

Charles C. Nwosu, Jincui Huang, Danielle L. Aldredge, John S. Strum, Serenus Hua, Richard R. Seipert, Carlito B Lebrilla

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Determining protein-specific glycosylation in protein mixtures remains a difficult task. A common approach is to use gel electrophoresis to isolate the protein followed by glycan release from the identified band. However, gel bands are often composed of several proteins. Hence, release of glycans from specific bands often yields products not from a single protein but a composite. As an alternative, we present an approach whereby glycans are released with peptide tags allowing verification of glycans bound to specific proteins. We term the process in-gel nonspecific proteolysis for elucidating glycoproteins (INPEG). INPEG combines rapid gel separation of a protein mixture with in-gel nonspecific proteolysis of protein bands followed by tandem mass spectrometry (MS) analysis of the resulting N- and O-glycopeptides. Here, in-gel digestion is shown for the first time with nonspecific and broad specific proteases such as Pronase, proteinase K, pepsin, papain, and subtilisin. Tandem MS analysis of the resulting glycopeptides separated on a porous graphitized carbon (PGC) chip was achieved via nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC/Q-TOF MS). In this study, rapid and automated glycopeptide assignment was achieved via an in-house software (Glycopeptide Finder) based on a combination of accurate mass measurement, tandem MS data, and predetermined protein identification (obtained via routine shotgun analysis). INPEG is here initially validated for O-glycosylation (κ casein) and N-glycosylation (ribonuclease B). Applications of INPEG were further demonstrated for the rapid determination of detailed site-specific glycosylation of lactoferrin and transferrin following gel separation and INPEG analysis on crude bovine milk and human serum, respectively.

Original languageEnglish (US)
Pages (from-to)956-963
Number of pages8
JournalAnalytical Chemistry
Volume85
Issue number2
DOIs
Publication statusPublished - Jan 15 2013

    Fingerprint

ASJC Scopus subject areas

  • Analytical Chemistry

Cite this