Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection

Emir Islamovic, Alexis Duncan, Donald M Bers, William T. Gerthoffer, Ruben Mestril

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Recent studies show that overexpression of small heat shock protein 20 (Hsp20) in mouse hearts reduces infarct size and improves cardiac performance. However, it is not known whether Hsp20 exerts its protective action through improved calcium handling or chaperone activity. The C-terminal extensions of small heat shock proteins, such as αB-crystallin and Hsp25, are implicated in chaperoning activity. Through adenovirus mediated overexpression of Hsp20 with C-terminal extension substitution, we delineated the mechanism of protection. Neonatal and adult rat cardiomyocytes overexpressing either the full-length Hsp20 or Hsp20 with a C-terminal extension substitution were subjected to simulated ischemia for 14-16 h followed by reperfusion 6-8 h. Overexpressing Hsp20 with a C-terminus extension substitution did not protect against simulated ischemia/reperfusion in either adult (98 ± 8.8% LDH release of control) or neonatal cardiomyocytes (103 ± 1.8% CK release of control) as measured by creatine kinase (CK) and lactate dehydrogenase (LDH) cell viability assays (n = 4, P < 0.05). However, this Hsp20 C-terminal substitution mutant increased calcium transients 33 ± 11% and cell contraction amplitude 60 ± 15% as quantified through epifluorescence microscopy (n = 16 to 34 cells per heart from 4 to 5 hearts, P < 0.05). In contrast, overexpression of the full-length Hsp20 protected cultured adult (53 ± 8.5% LDH release of control) and neonatal rat (57 ± 8.3% CK release of control) cardiomyocytes from simulated ischemia/reperfusion injury. This overexpression also increased calcium transients 30 ± 10% and cell contraction amplitude 50 ± 10%. These novel data suggest that the C-terminal extension of Hsp20 is essential for cardioprotection. Hsp20 renders this protection through its C-terminal extension protein domain, while this part of the protein is not involved in the Hsp20 ability to increase both calcium transients and cell contraction.

Original languageEnglish (US)
Pages (from-to)862-869
Number of pages8
JournalJournal of Molecular and Cellular Cardiology
Volume42
Issue number4
DOIs
StatePublished - Apr 2007
Externally publishedYes

Fingerprint

HSP20 Heat-Shock Proteins
Small Heat-Shock Proteins
Protein C
Creatine Kinase
L-Lactate Dehydrogenase
Cardiac Myocytes
Calcium
Reperfusion
Ischemia
Crystallins
Reperfusion Injury

Keywords

  • Calcium
  • Ischemia
  • Reperfusion

ASJC Scopus subject areas

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

Cite this

Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. / Islamovic, Emir; Duncan, Alexis; Bers, Donald M; Gerthoffer, William T.; Mestril, Ruben.

In: Journal of Molecular and Cellular Cardiology, Vol. 42, No. 4, 04.2007, p. 862-869.

Research output: Contribution to journalArticle

Islamovic, Emir ; Duncan, Alexis ; Bers, Donald M ; Gerthoffer, William T. ; Mestril, Ruben. / Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection. In: Journal of Molecular and Cellular Cardiology. 2007 ; Vol. 42, No. 4. pp. 862-869.
@article{9f3ada852800431885b72975862ef964,
title = "Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection",
abstract = "Recent studies show that overexpression of small heat shock protein 20 (Hsp20) in mouse hearts reduces infarct size and improves cardiac performance. However, it is not known whether Hsp20 exerts its protective action through improved calcium handling or chaperone activity. The C-terminal extensions of small heat shock proteins, such as αB-crystallin and Hsp25, are implicated in chaperoning activity. Through adenovirus mediated overexpression of Hsp20 with C-terminal extension substitution, we delineated the mechanism of protection. Neonatal and adult rat cardiomyocytes overexpressing either the full-length Hsp20 or Hsp20 with a C-terminal extension substitution were subjected to simulated ischemia for 14-16 h followed by reperfusion 6-8 h. Overexpressing Hsp20 with a C-terminus extension substitution did not protect against simulated ischemia/reperfusion in either adult (98 ± 8.8{\%} LDH release of control) or neonatal cardiomyocytes (103 ± 1.8{\%} CK release of control) as measured by creatine kinase (CK) and lactate dehydrogenase (LDH) cell viability assays (n = 4, P < 0.05). However, this Hsp20 C-terminal substitution mutant increased calcium transients 33 ± 11{\%} and cell contraction amplitude 60 ± 15{\%} as quantified through epifluorescence microscopy (n = 16 to 34 cells per heart from 4 to 5 hearts, P < 0.05). In contrast, overexpression of the full-length Hsp20 protected cultured adult (53 ± 8.5{\%} LDH release of control) and neonatal rat (57 ± 8.3{\%} CK release of control) cardiomyocytes from simulated ischemia/reperfusion injury. This overexpression also increased calcium transients 30 ± 10{\%} and cell contraction amplitude 50 ± 10{\%}. These novel data suggest that the C-terminal extension of Hsp20 is essential for cardioprotection. Hsp20 renders this protection through its C-terminal extension protein domain, while this part of the protein is not involved in the Hsp20 ability to increase both calcium transients and cell contraction.",
keywords = "Calcium, Ischemia, Reperfusion",
author = "Emir Islamovic and Alexis Duncan and Bers, {Donald M} and Gerthoffer, {William T.} and Ruben Mestril",
year = "2007",
month = "4",
doi = "10.1016/j.yjmcc.2007.01.002",
language = "English (US)",
volume = "42",
pages = "862--869",
journal = "Journal of Molecular and Cellular Cardiology",
issn = "0022-2828",
publisher = "Academic Press Inc.",
number = "4",

}

TY - JOUR

T1 - Importance of small heat shock protein 20 (hsp20) C-terminal extension in cardioprotection

AU - Islamovic, Emir

AU - Duncan, Alexis

AU - Bers, Donald M

AU - Gerthoffer, William T.

AU - Mestril, Ruben

PY - 2007/4

Y1 - 2007/4

N2 - Recent studies show that overexpression of small heat shock protein 20 (Hsp20) in mouse hearts reduces infarct size and improves cardiac performance. However, it is not known whether Hsp20 exerts its protective action through improved calcium handling or chaperone activity. The C-terminal extensions of small heat shock proteins, such as αB-crystallin and Hsp25, are implicated in chaperoning activity. Through adenovirus mediated overexpression of Hsp20 with C-terminal extension substitution, we delineated the mechanism of protection. Neonatal and adult rat cardiomyocytes overexpressing either the full-length Hsp20 or Hsp20 with a C-terminal extension substitution were subjected to simulated ischemia for 14-16 h followed by reperfusion 6-8 h. Overexpressing Hsp20 with a C-terminus extension substitution did not protect against simulated ischemia/reperfusion in either adult (98 ± 8.8% LDH release of control) or neonatal cardiomyocytes (103 ± 1.8% CK release of control) as measured by creatine kinase (CK) and lactate dehydrogenase (LDH) cell viability assays (n = 4, P < 0.05). However, this Hsp20 C-terminal substitution mutant increased calcium transients 33 ± 11% and cell contraction amplitude 60 ± 15% as quantified through epifluorescence microscopy (n = 16 to 34 cells per heart from 4 to 5 hearts, P < 0.05). In contrast, overexpression of the full-length Hsp20 protected cultured adult (53 ± 8.5% LDH release of control) and neonatal rat (57 ± 8.3% CK release of control) cardiomyocytes from simulated ischemia/reperfusion injury. This overexpression also increased calcium transients 30 ± 10% and cell contraction amplitude 50 ± 10%. These novel data suggest that the C-terminal extension of Hsp20 is essential for cardioprotection. Hsp20 renders this protection through its C-terminal extension protein domain, while this part of the protein is not involved in the Hsp20 ability to increase both calcium transients and cell contraction.

AB - Recent studies show that overexpression of small heat shock protein 20 (Hsp20) in mouse hearts reduces infarct size and improves cardiac performance. However, it is not known whether Hsp20 exerts its protective action through improved calcium handling or chaperone activity. The C-terminal extensions of small heat shock proteins, such as αB-crystallin and Hsp25, are implicated in chaperoning activity. Through adenovirus mediated overexpression of Hsp20 with C-terminal extension substitution, we delineated the mechanism of protection. Neonatal and adult rat cardiomyocytes overexpressing either the full-length Hsp20 or Hsp20 with a C-terminal extension substitution were subjected to simulated ischemia for 14-16 h followed by reperfusion 6-8 h. Overexpressing Hsp20 with a C-terminus extension substitution did not protect against simulated ischemia/reperfusion in either adult (98 ± 8.8% LDH release of control) or neonatal cardiomyocytes (103 ± 1.8% CK release of control) as measured by creatine kinase (CK) and lactate dehydrogenase (LDH) cell viability assays (n = 4, P < 0.05). However, this Hsp20 C-terminal substitution mutant increased calcium transients 33 ± 11% and cell contraction amplitude 60 ± 15% as quantified through epifluorescence microscopy (n = 16 to 34 cells per heart from 4 to 5 hearts, P < 0.05). In contrast, overexpression of the full-length Hsp20 protected cultured adult (53 ± 8.5% LDH release of control) and neonatal rat (57 ± 8.3% CK release of control) cardiomyocytes from simulated ischemia/reperfusion injury. This overexpression also increased calcium transients 30 ± 10% and cell contraction amplitude 50 ± 10%. These novel data suggest that the C-terminal extension of Hsp20 is essential for cardioprotection. Hsp20 renders this protection through its C-terminal extension protein domain, while this part of the protein is not involved in the Hsp20 ability to increase both calcium transients and cell contraction.

KW - Calcium

KW - Ischemia

KW - Reperfusion

UR - http://www.scopus.com/inward/record.url?scp=34047211124&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34047211124&partnerID=8YFLogxK

U2 - 10.1016/j.yjmcc.2007.01.002

DO - 10.1016/j.yjmcc.2007.01.002

M3 - Article

C2 - 17292395

AN - SCOPUS:34047211124

VL - 42

SP - 862

EP - 869

JO - Journal of Molecular and Cellular Cardiology

JF - Journal of Molecular and Cellular Cardiology

SN - 0022-2828

IS - 4

ER -