Importance of geometry and refractory period in sustaining atrial fibrillation: Testing the critical mass hypothesis

Gregory D. Byrd, Sandip M. Prasad, Crystal M Ripplinger, T. Ryan Cassilly, Richard B. Schuessler, John P. Boineau, Ralph J. Damiano

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Background - The critical mass hypothesis for atrial fibrillation (AF) was proposed in 1914. There has never been a systematic investigation defining the relationship between tissue geometry and AF. The purpose of this study was to determine the association among the probability of maintaining AF and the width, area, weight, effective refractory period (ERP), and wavelength in atrial tissue. Methods and Results - Isolated canine atria (n=20) were perfused with Krebs-Henseleit solution. Baseline ERPs were obtained with and without acetylcholine (10E-3.5 mol/L) using single extra-stimulus pacing while unipolar electrograms were recorded from 250 sites. The tissue was then partitioned using bipolar radiofrequency ablation, and the ERPs were measured again with and without acetylcholine. Any section of tissue that maintained AF was divided until the arrhythmia was no longer inducible. ERPs and conduction velocities were measured in all of the sections after each ablation, and the wavelengths were calculated. The probability of AF was found to be correlated with increasing tissue areas, widths, and weights (P<0.001). The probability of AF was significantly associated with the length of the ERP and the wavelength (P<0.001). With shorter ERPs and shorter wavelengths, there was an increased probability of sustained AF. Conclusions - The probability of sustained AF was significantly associated with increasing tissue area, width, and weight and decreasing ERPs and wavelengths. These data may lead to a better understanding of the mechanism of AF and, thus, help to design more-effective interventional procedures in the future.

Original languageEnglish (US)
JournalCirculation
Volume112
Issue number9 SUPPL.
DOIs
StatePublished - Aug 30 2005
Externally publishedYes

Fingerprint

Atrial Fibrillation
Weights and Measures
Acetylcholine
Canidae
Cardiac Arrhythmias

Keywords

  • Arrhythmia
  • Atrial fibrillation
  • Maze procedure

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Importance of geometry and refractory period in sustaining atrial fibrillation : Testing the critical mass hypothesis. / Byrd, Gregory D.; Prasad, Sandip M.; Ripplinger, Crystal M; Cassilly, T. Ryan; Schuessler, Richard B.; Boineau, John P.; Damiano, Ralph J.

In: Circulation, Vol. 112, No. 9 SUPPL., 30.08.2005.

Research output: Contribution to journalArticle

Byrd, Gregory D. ; Prasad, Sandip M. ; Ripplinger, Crystal M ; Cassilly, T. Ryan ; Schuessler, Richard B. ; Boineau, John P. ; Damiano, Ralph J. / Importance of geometry and refractory period in sustaining atrial fibrillation : Testing the critical mass hypothesis. In: Circulation. 2005 ; Vol. 112, No. 9 SUPPL.
@article{ca187f9abc6547288e5f487b353f1755,
title = "Importance of geometry and refractory period in sustaining atrial fibrillation: Testing the critical mass hypothesis",
abstract = "Background - The critical mass hypothesis for atrial fibrillation (AF) was proposed in 1914. There has never been a systematic investigation defining the relationship between tissue geometry and AF. The purpose of this study was to determine the association among the probability of maintaining AF and the width, area, weight, effective refractory period (ERP), and wavelength in atrial tissue. Methods and Results - Isolated canine atria (n=20) were perfused with Krebs-Henseleit solution. Baseline ERPs were obtained with and without acetylcholine (10E-3.5 mol/L) using single extra-stimulus pacing while unipolar electrograms were recorded from 250 sites. The tissue was then partitioned using bipolar radiofrequency ablation, and the ERPs were measured again with and without acetylcholine. Any section of tissue that maintained AF was divided until the arrhythmia was no longer inducible. ERPs and conduction velocities were measured in all of the sections after each ablation, and the wavelengths were calculated. The probability of AF was found to be correlated with increasing tissue areas, widths, and weights (P<0.001). The probability of AF was significantly associated with the length of the ERP and the wavelength (P<0.001). With shorter ERPs and shorter wavelengths, there was an increased probability of sustained AF. Conclusions - The probability of sustained AF was significantly associated with increasing tissue area, width, and weight and decreasing ERPs and wavelengths. These data may lead to a better understanding of the mechanism of AF and, thus, help to design more-effective interventional procedures in the future.",
keywords = "Arrhythmia, Atrial fibrillation, Maze procedure",
author = "Byrd, {Gregory D.} and Prasad, {Sandip M.} and Ripplinger, {Crystal M} and Cassilly, {T. Ryan} and Schuessler, {Richard B.} and Boineau, {John P.} and Damiano, {Ralph J.}",
year = "2005",
month = "8",
day = "30",
doi = "10.1161/CIRCULATIONAHA.104.526210",
language = "English (US)",
volume = "112",
journal = "Circulation",
issn = "0009-7322",
publisher = "Lippincott Williams and Wilkins",
number = "9 SUPPL.",

}

TY - JOUR

T1 - Importance of geometry and refractory period in sustaining atrial fibrillation

T2 - Testing the critical mass hypothesis

AU - Byrd, Gregory D.

AU - Prasad, Sandip M.

AU - Ripplinger, Crystal M

AU - Cassilly, T. Ryan

AU - Schuessler, Richard B.

AU - Boineau, John P.

AU - Damiano, Ralph J.

PY - 2005/8/30

Y1 - 2005/8/30

N2 - Background - The critical mass hypothesis for atrial fibrillation (AF) was proposed in 1914. There has never been a systematic investigation defining the relationship between tissue geometry and AF. The purpose of this study was to determine the association among the probability of maintaining AF and the width, area, weight, effective refractory period (ERP), and wavelength in atrial tissue. Methods and Results - Isolated canine atria (n=20) were perfused with Krebs-Henseleit solution. Baseline ERPs were obtained with and without acetylcholine (10E-3.5 mol/L) using single extra-stimulus pacing while unipolar electrograms were recorded from 250 sites. The tissue was then partitioned using bipolar radiofrequency ablation, and the ERPs were measured again with and without acetylcholine. Any section of tissue that maintained AF was divided until the arrhythmia was no longer inducible. ERPs and conduction velocities were measured in all of the sections after each ablation, and the wavelengths were calculated. The probability of AF was found to be correlated with increasing tissue areas, widths, and weights (P<0.001). The probability of AF was significantly associated with the length of the ERP and the wavelength (P<0.001). With shorter ERPs and shorter wavelengths, there was an increased probability of sustained AF. Conclusions - The probability of sustained AF was significantly associated with increasing tissue area, width, and weight and decreasing ERPs and wavelengths. These data may lead to a better understanding of the mechanism of AF and, thus, help to design more-effective interventional procedures in the future.

AB - Background - The critical mass hypothesis for atrial fibrillation (AF) was proposed in 1914. There has never been a systematic investigation defining the relationship between tissue geometry and AF. The purpose of this study was to determine the association among the probability of maintaining AF and the width, area, weight, effective refractory period (ERP), and wavelength in atrial tissue. Methods and Results - Isolated canine atria (n=20) were perfused with Krebs-Henseleit solution. Baseline ERPs were obtained with and without acetylcholine (10E-3.5 mol/L) using single extra-stimulus pacing while unipolar electrograms were recorded from 250 sites. The tissue was then partitioned using bipolar radiofrequency ablation, and the ERPs were measured again with and without acetylcholine. Any section of tissue that maintained AF was divided until the arrhythmia was no longer inducible. ERPs and conduction velocities were measured in all of the sections after each ablation, and the wavelengths were calculated. The probability of AF was found to be correlated with increasing tissue areas, widths, and weights (P<0.001). The probability of AF was significantly associated with the length of the ERP and the wavelength (P<0.001). With shorter ERPs and shorter wavelengths, there was an increased probability of sustained AF. Conclusions - The probability of sustained AF was significantly associated with increasing tissue area, width, and weight and decreasing ERPs and wavelengths. These data may lead to a better understanding of the mechanism of AF and, thus, help to design more-effective interventional procedures in the future.

KW - Arrhythmia

KW - Atrial fibrillation

KW - Maze procedure

UR - http://www.scopus.com/inward/record.url?scp=24644431922&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=24644431922&partnerID=8YFLogxK

U2 - 10.1161/CIRCULATIONAHA.104.526210

DO - 10.1161/CIRCULATIONAHA.104.526210

M3 - Article

C2 - 16159868

AN - SCOPUS:24644431922

VL - 112

JO - Circulation

JF - Circulation

SN - 0009-7322

IS - 9 SUPPL.

ER -