Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes

Hongli Li, Xudong Ding, Jose R. Lopez, Hiroshi Takeshima, Jianjie Ma, Paul D. Allen, Jose M. Eltit

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

In the absence of store depletion, plasmalemmal Ca2+ permeability in resting muscle is very low, and its contribution in the maintenance of Ca2+ homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca2+ entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca2+ entry pathway on overall Ca2+ homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca2+ entry, [Ca2+] rest, and intracellular Ca2+ content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca2+ entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca 2+ homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca2+ homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca2+ permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca2+]rest and resting Ca2+ stores and that this pathway is defective in JP1 KO myotubes.

Original languageEnglish (US)
Pages (from-to)39171-39179
Number of pages9
JournalJournal of Biological Chemistry
Volume285
Issue number50
DOIs
StatePublished - Dec 10 2010
Externally publishedYes

Fingerprint

Skeletal Muscle Fibers
Sarcoplasmic Reticulum
Homeostasis
junctophilin
Refractory materials
Muscle
Permeability
Proteins

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes. / Li, Hongli; Ding, Xudong; Lopez, Jose R.; Takeshima, Hiroshi; Ma, Jianjie; Allen, Paul D.; Eltit, Jose M.

In: Journal of Biological Chemistry, Vol. 285, No. 50, 10.12.2010, p. 39171-39179.

Research output: Contribution to journalArticle

Li, Hongli ; Ding, Xudong ; Lopez, Jose R. ; Takeshima, Hiroshi ; Ma, Jianjie ; Allen, Paul D. ; Eltit, Jose M. / Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes. In: Journal of Biological Chemistry. 2010 ; Vol. 285, No. 50. pp. 39171-39179.
@article{bc15114e865440b6af17ff32f5143c5f,
title = "Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes",
abstract = "In the absence of store depletion, plasmalemmal Ca2+ permeability in resting muscle is very low, and its contribution in the maintenance of Ca2+ homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca2+ entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca2+ entry pathway on overall Ca2+ homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca2+ entry, [Ca2+] rest, and intracellular Ca2+ content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca2+ entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca 2+ homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca2+ homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca2+ permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca2+]rest and resting Ca2+ stores and that this pathway is defective in JP1 KO myotubes.",
author = "Hongli Li and Xudong Ding and Lopez, {Jose R.} and Hiroshi Takeshima and Jianjie Ma and Allen, {Paul D.} and Eltit, {Jose M.}",
year = "2010",
month = "12",
day = "10",
doi = "10.1074/jbc.M110.149690",
language = "English (US)",
volume = "285",
pages = "39171--39179",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "50",

}

TY - JOUR

T1 - Impaired Orai1-mediated resting Ca2+ entry reduces the cytosolic [Ca2+] and sarcoplasmic reticulum Ca2+ loading in quiescent junctophilin 1 knock-out myotubes

AU - Li, Hongli

AU - Ding, Xudong

AU - Lopez, Jose R.

AU - Takeshima, Hiroshi

AU - Ma, Jianjie

AU - Allen, Paul D.

AU - Eltit, Jose M.

PY - 2010/12/10

Y1 - 2010/12/10

N2 - In the absence of store depletion, plasmalemmal Ca2+ permeability in resting muscle is very low, and its contribution in the maintenance of Ca2+ homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca2+ entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca2+ entry pathway on overall Ca2+ homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca2+ entry, [Ca2+] rest, and intracellular Ca2+ content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca2+ entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca 2+ homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca2+ homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca2+ permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca2+]rest and resting Ca2+ stores and that this pathway is defective in JP1 KO myotubes.

AB - In the absence of store depletion, plasmalemmal Ca2+ permeability in resting muscle is very low, and its contribution in the maintenance of Ca2+ homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca2+ entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca2+ entry pathway on overall Ca2+ homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca2+ entry, [Ca2+] rest, and intracellular Ca2+ content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca2+ entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca 2+ homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca2+ homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca2+ permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca2+]rest and resting Ca2+ stores and that this pathway is defective in JP1 KO myotubes.

UR - http://www.scopus.com/inward/record.url?scp=78649847421&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649847421&partnerID=8YFLogxK

U2 - 10.1074/jbc.M110.149690

DO - 10.1074/jbc.M110.149690

M3 - Article

C2 - 20937810

AN - SCOPUS:78649847421

VL - 285

SP - 39171

EP - 39179

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 50

ER -