IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation

Hao Li, Maria G. Tsokos, Rhea Bhargava, Iannis E. Adamopoulos, Hanni Menn-Josephy, Isaac E. Stillman, Philip Rosenstiel, Jarrat Jordan, George C. Tsokos

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Interstitial kidney inflammation is present in various nephritides in which serum interleukin 23 (IL-23) is elevated. Here we showed that murine and human renal tubular epithelial cells (TECs) expressing the IL-23 receptor (IL-23R) responded to IL-23 by inducing intracellular calcium flux, enhancing glycolysis, and upregulating calcium/calmodulin kinase IV (CaMK4), which resulted in suppression of the expression of the arginine-degrading enzyme arginase 1 (ARG1), thus increasing in situ levels of free L-arginine. Limited availability of arginine suppressed the ability of infiltrating T cells to proliferate and produce inflammatory cytokines. TECs from humans and mice with nephritis expressed increased levels of IL-23R and CaMK4 but reduced levels of ARG1. TEC-specific deletion of Il23r or Camk4 suppressed inflammation, whereas deletion of Arg1 exacerbated inflammation in different murine disease models. Finally, TEC-specific delivery of a CaMK4 inhibitor specifically curbed renal inflammation in lupus-prone mice without affecting systemic inflammation. Our data offer the first evidence to our knowledge of the immunosuppressive capacity of TECs through a mechanism that involves competitive uptake of arginine and signify the importance of modulation of an inflammatory cytokine in the function of nonlymphoid cells, which leads to the establishment of an inflammatory microenvironment. New approaches to treat kidney inflammation should consider restoring the immunosuppressive capacity of TECs.

Original languageEnglish (US)
Article numbere142428
JournalJournal of Clinical Investigation
Issue number12
StatePublished - Jun 2021
Externally publishedYes

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation'. Together they form a unique fingerprint.

Cite this