Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene

R. E. Kelly, M. L. DeRose, B. W. Draper, G. M. Wahl

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Most DNA replication origins in eukaryotes localize to nontranscribed regions, and there are no reports of origins within constitutively expressed genes. This observation has led to the proposal that there may be an incompatibility between origin function and location within a ubiquitously expressed gene. The biochemical and functional evidence presented here demonstrates that an origin of bidirectional replication (OBR) resides within the constitutively expressed housekeeping gene CAD, which encodes the first three reactions of de novo uridine biosynthesis (carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, and dihydroorotase). The OBR was localized to a 5-kb region near the center of the Syrian hamster CAD transcriptional unit. DNA replication initiates within this region in the single-copy CAD gene in Syrian baby hamster kidney cells and in the large chromosomal amplicons that were generated after selection with N- phosphonacetyl-L-aspartate, a specific inhibitor of CAD. DNA synthesis also initiates within this OBR in autonomously replicating extrachromosomal amplicons (CAD episomes) located in an N-phosphonacetyl-L-aspartate-resistant clone (5P20) of CHOK1 cells. CAD episomes consist entirely of a multimer of Syrian hamster CAD cosmid sequences (cCAD1). These data limit the functional unit of replication initiation and timing control to the 42 kb of Syrian hamster sequences contained in cCAD1. In addition, the data indicate that the origin recognition machinery is conserved across species, since the same OBR region functions in both Syrian and Chinese hamster cells. Importantly, while cCAD1 exhibits characteristics of a complete replicon, we have not detected autonomous replication directly following transfection. Since the CAD episome was generated after excision of chromosomally integrated transfected cCAD1 sequences, we propose that prior localization within a chromosome may be necessary to 'license' some biochemically defined OBRs to render them functional.

Original languageEnglish (US)
Pages (from-to)4136-4148
Number of pages13
JournalMolecular and Cellular Biology
Volume15
Issue number8
StatePublished - 1995

Fingerprint

Replication Origin
Mesocricetus
DNA Replication
NSC 224131
Replicon
Plasmids
Genes
Dihydroorotase
Aspartate Carbamoyltransferase
Carbamyl Phosphate
Cosmids
Uridine
Essential Genes
Licensure
Ligases
Cricetulus
Eukaryota
Transfection
Clone Cells
Chromosomes

ASJC Scopus subject areas

  • Cell Biology
  • Genetics
  • Molecular Biology

Cite this

Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene. / Kelly, R. E.; DeRose, M. L.; Draper, B. W.; Wahl, G. M.

In: Molecular and Cellular Biology, Vol. 15, No. 8, 1995, p. 4136-4148.

Research output: Contribution to journalArticle

Kelly, R. E. ; DeRose, M. L. ; Draper, B. W. ; Wahl, G. M. / Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene. In: Molecular and Cellular Biology. 1995 ; Vol. 15, No. 8. pp. 4136-4148.
@article{19a742c906c64350a2f2207cd1fbebca,
title = "Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene",
abstract = "Most DNA replication origins in eukaryotes localize to nontranscribed regions, and there are no reports of origins within constitutively expressed genes. This observation has led to the proposal that there may be an incompatibility between origin function and location within a ubiquitously expressed gene. The biochemical and functional evidence presented here demonstrates that an origin of bidirectional replication (OBR) resides within the constitutively expressed housekeeping gene CAD, which encodes the first three reactions of de novo uridine biosynthesis (carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, and dihydroorotase). The OBR was localized to a 5-kb region near the center of the Syrian hamster CAD transcriptional unit. DNA replication initiates within this region in the single-copy CAD gene in Syrian baby hamster kidney cells and in the large chromosomal amplicons that were generated after selection with N- phosphonacetyl-L-aspartate, a specific inhibitor of CAD. DNA synthesis also initiates within this OBR in autonomously replicating extrachromosomal amplicons (CAD episomes) located in an N-phosphonacetyl-L-aspartate-resistant clone (5P20) of CHOK1 cells. CAD episomes consist entirely of a multimer of Syrian hamster CAD cosmid sequences (cCAD1). These data limit the functional unit of replication initiation and timing control to the 42 kb of Syrian hamster sequences contained in cCAD1. In addition, the data indicate that the origin recognition machinery is conserved across species, since the same OBR region functions in both Syrian and Chinese hamster cells. Importantly, while cCAD1 exhibits characteristics of a complete replicon, we have not detected autonomous replication directly following transfection. Since the CAD episome was generated after excision of chromosomally integrated transfected cCAD1 sequences, we propose that prior localization within a chromosome may be necessary to 'license' some biochemically defined OBRs to render them functional.",
author = "Kelly, {R. E.} and DeRose, {M. L.} and Draper, {B. W.} and Wahl, {G. M.}",
year = "1995",
language = "English (US)",
volume = "15",
pages = "4136--4148",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "8",

}

TY - JOUR

T1 - Identification of an origin of bidirectional DNA replication in the ubiquitously expressed mammalian CAD gene

AU - Kelly, R. E.

AU - DeRose, M. L.

AU - Draper, B. W.

AU - Wahl, G. M.

PY - 1995

Y1 - 1995

N2 - Most DNA replication origins in eukaryotes localize to nontranscribed regions, and there are no reports of origins within constitutively expressed genes. This observation has led to the proposal that there may be an incompatibility between origin function and location within a ubiquitously expressed gene. The biochemical and functional evidence presented here demonstrates that an origin of bidirectional replication (OBR) resides within the constitutively expressed housekeeping gene CAD, which encodes the first three reactions of de novo uridine biosynthesis (carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, and dihydroorotase). The OBR was localized to a 5-kb region near the center of the Syrian hamster CAD transcriptional unit. DNA replication initiates within this region in the single-copy CAD gene in Syrian baby hamster kidney cells and in the large chromosomal amplicons that were generated after selection with N- phosphonacetyl-L-aspartate, a specific inhibitor of CAD. DNA synthesis also initiates within this OBR in autonomously replicating extrachromosomal amplicons (CAD episomes) located in an N-phosphonacetyl-L-aspartate-resistant clone (5P20) of CHOK1 cells. CAD episomes consist entirely of a multimer of Syrian hamster CAD cosmid sequences (cCAD1). These data limit the functional unit of replication initiation and timing control to the 42 kb of Syrian hamster sequences contained in cCAD1. In addition, the data indicate that the origin recognition machinery is conserved across species, since the same OBR region functions in both Syrian and Chinese hamster cells. Importantly, while cCAD1 exhibits characteristics of a complete replicon, we have not detected autonomous replication directly following transfection. Since the CAD episome was generated after excision of chromosomally integrated transfected cCAD1 sequences, we propose that prior localization within a chromosome may be necessary to 'license' some biochemically defined OBRs to render them functional.

AB - Most DNA replication origins in eukaryotes localize to nontranscribed regions, and there are no reports of origins within constitutively expressed genes. This observation has led to the proposal that there may be an incompatibility between origin function and location within a ubiquitously expressed gene. The biochemical and functional evidence presented here demonstrates that an origin of bidirectional replication (OBR) resides within the constitutively expressed housekeeping gene CAD, which encodes the first three reactions of de novo uridine biosynthesis (carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, and dihydroorotase). The OBR was localized to a 5-kb region near the center of the Syrian hamster CAD transcriptional unit. DNA replication initiates within this region in the single-copy CAD gene in Syrian baby hamster kidney cells and in the large chromosomal amplicons that were generated after selection with N- phosphonacetyl-L-aspartate, a specific inhibitor of CAD. DNA synthesis also initiates within this OBR in autonomously replicating extrachromosomal amplicons (CAD episomes) located in an N-phosphonacetyl-L-aspartate-resistant clone (5P20) of CHOK1 cells. CAD episomes consist entirely of a multimer of Syrian hamster CAD cosmid sequences (cCAD1). These data limit the functional unit of replication initiation and timing control to the 42 kb of Syrian hamster sequences contained in cCAD1. In addition, the data indicate that the origin recognition machinery is conserved across species, since the same OBR region functions in both Syrian and Chinese hamster cells. Importantly, while cCAD1 exhibits characteristics of a complete replicon, we have not detected autonomous replication directly following transfection. Since the CAD episome was generated after excision of chromosomally integrated transfected cCAD1 sequences, we propose that prior localization within a chromosome may be necessary to 'license' some biochemically defined OBRs to render them functional.

UR - http://www.scopus.com/inward/record.url?scp=0029065719&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029065719&partnerID=8YFLogxK

M3 - Article

VL - 15

SP - 4136

EP - 4148

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 8

ER -