TY - JOUR
T1 - Hyperventilation-induced reduction in cerebral blood flow
T2 - Assessment by positron emission tomography
AU - Bednarczyk, E. M.
AU - Rutherford, W. F.
AU - Leisure, G. P.
AU - Munger, M. A.
AU - Panacek, Edward A
AU - Miraldi, F. D.
AU - Green, J. A.
PY - 1990
Y1 - 1990
N2 - The use of positron emission tomography (PET) has been well documented as a relatively noninvasive method of measuring cerebral blood flow (CBF), both globally and regionally. The utility of readily detecting alterations in CBF is apparent, particularly when applied to the evaluation of therapeutic interventions thought to influence CBF. We report the effects of hypocapnia, an experimental condition of known cerebral vasoconstriction, in ten normal volunteers. Subjects had brain blood flow evaluated utilizing H2
15O as the positron emitter before and after approximately five minutes of hyperventilation. Baseline CBF was measured as a mean ± SD of 61.2 ± 16.3 mL/min/100 g of tissue. Mean baseline arterial blood gas values were PaO2 107.4 ± 14 mm Hg, PaCO2 37.7 ± 0.89 mm Hg, and pH 7.39 (calculated from mean [H+]). Post hyperventilation, global CBF was measured as 31.1 ± 10.8 mL/min/100 g. Mean arterial blood gas values were PaO2 141.7 ± 21 mm Hg, PaCO2 19.7 ± 5 mm Hg, and pH 7.63 (calculated from mean [H+]). CBF decreased by a mean of 49.5 ± 11 percent. Data analysis using the Student's t-test showed a significant change over baseline in PaCO2 (p < 0.001) and CBF (p < 0.001), in the hyperventilated state. Correlations were noted between the decrease in CBF and change in PaCO2 (r = 0.81) as well as between hyperventilation PaCO2 and the change in CBF (r = 0.97). We conclude that, as measured by PET, CBF decreases significantly during a state of artificial hyperventilation to a degree consistent with results seen using other methods. PET appears to be a valuable tool in the assessment of interventions that could influence CBF.
AB - The use of positron emission tomography (PET) has been well documented as a relatively noninvasive method of measuring cerebral blood flow (CBF), both globally and regionally. The utility of readily detecting alterations in CBF is apparent, particularly when applied to the evaluation of therapeutic interventions thought to influence CBF. We report the effects of hypocapnia, an experimental condition of known cerebral vasoconstriction, in ten normal volunteers. Subjects had brain blood flow evaluated utilizing H2
15O as the positron emitter before and after approximately five minutes of hyperventilation. Baseline CBF was measured as a mean ± SD of 61.2 ± 16.3 mL/min/100 g of tissue. Mean baseline arterial blood gas values were PaO2 107.4 ± 14 mm Hg, PaCO2 37.7 ± 0.89 mm Hg, and pH 7.39 (calculated from mean [H+]). Post hyperventilation, global CBF was measured as 31.1 ± 10.8 mL/min/100 g. Mean arterial blood gas values were PaO2 141.7 ± 21 mm Hg, PaCO2 19.7 ± 5 mm Hg, and pH 7.63 (calculated from mean [H+]). CBF decreased by a mean of 49.5 ± 11 percent. Data analysis using the Student's t-test showed a significant change over baseline in PaCO2 (p < 0.001) and CBF (p < 0.001), in the hyperventilated state. Correlations were noted between the decrease in CBF and change in PaCO2 (r = 0.81) as well as between hyperventilation PaCO2 and the change in CBF (r = 0.97). We conclude that, as measured by PET, CBF decreases significantly during a state of artificial hyperventilation to a degree consistent with results seen using other methods. PET appears to be a valuable tool in the assessment of interventions that could influence CBF.
UR - http://www.scopus.com/inward/record.url?scp=0025343304&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025343304&partnerID=8YFLogxK
M3 - Article
C2 - 2343589
AN - SCOPUS:0025343304
VL - 24
SP - 456
EP - 460
JO - Annals of Pharmacotherapy
JF - Annals of Pharmacotherapy
SN - 1060-0280
IS - 5
ER -