Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi

Anna L. Drexler, Jose E. Pietri, Nazzy Pakpour, Eric Hauck, Bo Wang, Elizabeth K K Glennon, Martha Georgis, Michael A. Riehle, Shirley Luckhart

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 μM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 μM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 μM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.

Original languageEnglish (US)
Article numbere1004231
JournalPLoS Pathogens
Volume10
Issue number6
DOIs
StatePublished - 2014

Fingerprint

Anopheles
Somatomedins
Plasmodium falciparum
Oxidative Stress
Homeostasis
Culicidae
70-kDa Ribosomal Protein S6 Kinases
Reactive Oxygen Species
Malaria
Mitochondrial Degradation
Apoptosis
Disease Vectors
Disease Resistance
Cytoprotection
JNK Mitogen-Activated Protein Kinases
Autophagy
Human Development
Nitric Oxide Synthase
Caspase 3
Cell Division

ASJC Scopus subject areas

  • Microbiology
  • Parasitology
  • Virology
  • Immunology
  • Genetics
  • Molecular Biology
  • Medicine(all)

Cite this

Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi. / Drexler, Anna L.; Pietri, Jose E.; Pakpour, Nazzy; Hauck, Eric; Wang, Bo; Glennon, Elizabeth K K; Georgis, Martha; Riehle, Michael A.; Luckhart, Shirley.

In: PLoS Pathogens, Vol. 10, No. 6, e1004231, 2014.

Research output: Contribution to journalArticle

Drexler, AL, Pietri, JE, Pakpour, N, Hauck, E, Wang, B, Glennon, EKK, Georgis, M, Riehle, MA & Luckhart, S 2014, 'Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi', PLoS Pathogens, vol. 10, no. 6, e1004231. https://doi.org/10.1371/journal.ppat.1004231
Drexler, Anna L. ; Pietri, Jose E. ; Pakpour, Nazzy ; Hauck, Eric ; Wang, Bo ; Glennon, Elizabeth K K ; Georgis, Martha ; Riehle, Michael A. ; Luckhart, Shirley. / Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi. In: PLoS Pathogens. 2014 ; Vol. 10, No. 6.
@article{100beff710264c4db3a28b493316abe3,
title = "Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi",
abstract = "Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 μM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 μM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 μM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.",
author = "Drexler, {Anna L.} and Pietri, {Jose E.} and Nazzy Pakpour and Eric Hauck and Bo Wang and Glennon, {Elizabeth K K} and Martha Georgis and Riehle, {Michael A.} and Shirley Luckhart",
year = "2014",
doi = "10.1371/journal.ppat.1004231",
language = "English (US)",
volume = "10",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi

AU - Drexler, Anna L.

AU - Pietri, Jose E.

AU - Pakpour, Nazzy

AU - Hauck, Eric

AU - Wang, Bo

AU - Glennon, Elizabeth K K

AU - Georgis, Martha

AU - Riehle, Michael A.

AU - Luckhart, Shirley

PY - 2014

Y1 - 2014

N2 - Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 μM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 μM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 μM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.

AB - Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 μM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 μM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 μM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.

UR - http://www.scopus.com/inward/record.url?scp=84903475604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903475604&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1004231

DO - 10.1371/journal.ppat.1004231

M3 - Article

C2 - 24968248

AN - SCOPUS:84903475604

VL - 10

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 6

M1 - e1004231

ER -