Human ARX gene: Genomic characterization and expression

R. Ohira, Y. H. Zhang, W. Guo, K. Dipple, S. L. Shih, J. Doerr, B. L. Huang, L. J. Fu, A. Abu-Khalil, D. Geschwind, E. R B McCabe

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Arx is a homeobox-containing gene with a high degree of sequence similarity between mouse and zebrafish. Arx is expressed in the forebrain and floor plate of the developing central nervous systems of these vertebrates and in the presumptive cortex of fetal mice. Our goal was to identify genes in Xp22.1-p21.3 involved in human neuronal development. Our in silico search for candidate genes noted that annotation of a human Xp22 PAC (RPCI1-258N20) sequence (GenBank Accession No. AC002504) identified putative exons consistent with an Arx homologue in Xp22. Northern blot analysis showed that a 3.3 kb human ARX transcript was expressed at high levels in fetal brain. A 5.9 kb transcript was expressed in adult heart, skeletal muscle, and liver with very faint expression in other adult tissues, including brain. In situ hybridization of ARX in human fetal brain sections at various developmental stages showed the highest expression in neuronal precursors in the germinal matrix of the ganglionic eminence and in the ventricular zone of the telencephalon. Expression was also observed in the hippocampus, cingulate, subventricular zone, cortical plate, caudate nucleus, and putamen. The expression pattern suggests that ARX is involved in the differentiation and maintenance of specific neuronal cell types in the human central nervous system. We also mapped the murine Arx gene to the mouse genome using a mouse/hamster radiation hybrid panel and showed that Arx and ARX are orthologues. Therefore, investigations in model vertebrates may provide insight into the role of ARX in development. The recent identification of ARX mutations in patients with various forms of mental retardation make such studies in model organisms even more compelling.

Original languageEnglish (US)
Pages (from-to)179-188
Number of pages10
JournalMolecular Genetics and Metabolism
Issue number1-2
StatePublished - 2002


  • Aristaless-Related Homeobox (ARX) gene, human
  • CNS developmental gene candidate, ARX
  • Developmental expression, human, ARX
  • Fetal CNS development, ARX
  • Homeobox gene
  • In situ hybridization
  • Transcription factor, ARX

ASJC Scopus subject areas

  • Biochemistry
  • Genetics
  • Endocrinology, Diabetes and Metabolism


Dive into the research topics of 'Human ARX gene: Genomic characterization and expression'. Together they form a unique fingerprint.

Cite this