Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses

Susan M Stover, R. R. Pool, R. B. Martin, J. P. Morgan

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

The dorsal cortex of the equine third metacarpal mid-diaphyseal bone was characterised during growth by the histological and microradiographic examination of specimens from 30 horses ranging in age from 2 months to 8 y. Bone from horses aged less than 6 months was characterised by rapid periosteal apposition of circumferential trabeculae of woven bone that were next connected by radial trabeculae to the parent cortex. Deposition of lamellar bone on the inner trabecular surfaces resulted in rows of primary osteons. Replacement of primary bone occurred only after 4 months of age and preferentially in the woven interstitial bone separating rows of primary osteons formed in the postnatal periosteal cortex. Resorption cavities and incompletely filled secondary osteons characterised bone of 1 and 2-y-old horses. Bone from horses older than 3 y contained several generations of secondary osteons, fewer resorption spaces and incompletely filled osteons, and had a greater portion of circumferentially oriented collagen fibres than bone from younger horses. Bone from horses older than 5 y had large resorption cavities characterised by irregular boundaries. We propose that the process of periosteal bone tissue apposition observed in growing foals be called ' saltatory primary osteonal bone formation' and that this process results in faster cortical expansion and larger total surface area for bone deposition than circumferential lamellar, simple primary osteonal, and plexiform mechanisms of periosteal bone formation. We speculate that bone from 1 and 2-y-old horses would be more susceptible to fatigue microdamage resulting from compressive loads because of high porosity, few completed secondary osteons and low proportion of circumferentially oriented collagen fibres.

Original languageEnglish (US)
Pages (from-to)455-469
Number of pages15
JournalJournal of Anatomy
Volume181
Issue number3
StatePublished - 1992

Fingerprint

metacarpus
Diaphyses
Metacarpal Bones
horse
Horses
bone
cortex
bones
Haversian System
horses
Bone and Bones
Growth
resorption
bone formation
collagen
Osteogenesis
Collagen
cavity
Porosity
foals

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Anatomy

Cite this

Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses. / Stover, Susan M; Pool, R. R.; Martin, R. B.; Morgan, J. P.

In: Journal of Anatomy, Vol. 181, No. 3, 1992, p. 455-469.

Research output: Contribution to journalArticle

@article{18cd70dffab648c7b3004c8c73dfa81d,
title = "Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses",
abstract = "The dorsal cortex of the equine third metacarpal mid-diaphyseal bone was characterised during growth by the histological and microradiographic examination of specimens from 30 horses ranging in age from 2 months to 8 y. Bone from horses aged less than 6 months was characterised by rapid periosteal apposition of circumferential trabeculae of woven bone that were next connected by radial trabeculae to the parent cortex. Deposition of lamellar bone on the inner trabecular surfaces resulted in rows of primary osteons. Replacement of primary bone occurred only after 4 months of age and preferentially in the woven interstitial bone separating rows of primary osteons formed in the postnatal periosteal cortex. Resorption cavities and incompletely filled secondary osteons characterised bone of 1 and 2-y-old horses. Bone from horses older than 3 y contained several generations of secondary osteons, fewer resorption spaces and incompletely filled osteons, and had a greater portion of circumferentially oriented collagen fibres than bone from younger horses. Bone from horses older than 5 y had large resorption cavities characterised by irregular boundaries. We propose that the process of periosteal bone tissue apposition observed in growing foals be called ' saltatory primary osteonal bone formation' and that this process results in faster cortical expansion and larger total surface area for bone deposition than circumferential lamellar, simple primary osteonal, and plexiform mechanisms of periosteal bone formation. We speculate that bone from 1 and 2-y-old horses would be more susceptible to fatigue microdamage resulting from compressive loads because of high porosity, few completed secondary osteons and low proportion of circumferentially oriented collagen fibres.",
author = "Stover, {Susan M} and Pool, {R. R.} and Martin, {R. B.} and Morgan, {J. P.}",
year = "1992",
language = "English (US)",
volume = "181",
pages = "455--469",
journal = "Journal of Anatomy",
issn = "0021-8782",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses

AU - Stover, Susan M

AU - Pool, R. R.

AU - Martin, R. B.

AU - Morgan, J. P.

PY - 1992

Y1 - 1992

N2 - The dorsal cortex of the equine third metacarpal mid-diaphyseal bone was characterised during growth by the histological and microradiographic examination of specimens from 30 horses ranging in age from 2 months to 8 y. Bone from horses aged less than 6 months was characterised by rapid periosteal apposition of circumferential trabeculae of woven bone that were next connected by radial trabeculae to the parent cortex. Deposition of lamellar bone on the inner trabecular surfaces resulted in rows of primary osteons. Replacement of primary bone occurred only after 4 months of age and preferentially in the woven interstitial bone separating rows of primary osteons formed in the postnatal periosteal cortex. Resorption cavities and incompletely filled secondary osteons characterised bone of 1 and 2-y-old horses. Bone from horses older than 3 y contained several generations of secondary osteons, fewer resorption spaces and incompletely filled osteons, and had a greater portion of circumferentially oriented collagen fibres than bone from younger horses. Bone from horses older than 5 y had large resorption cavities characterised by irregular boundaries. We propose that the process of periosteal bone tissue apposition observed in growing foals be called ' saltatory primary osteonal bone formation' and that this process results in faster cortical expansion and larger total surface area for bone deposition than circumferential lamellar, simple primary osteonal, and plexiform mechanisms of periosteal bone formation. We speculate that bone from 1 and 2-y-old horses would be more susceptible to fatigue microdamage resulting from compressive loads because of high porosity, few completed secondary osteons and low proportion of circumferentially oriented collagen fibres.

AB - The dorsal cortex of the equine third metacarpal mid-diaphyseal bone was characterised during growth by the histological and microradiographic examination of specimens from 30 horses ranging in age from 2 months to 8 y. Bone from horses aged less than 6 months was characterised by rapid periosteal apposition of circumferential trabeculae of woven bone that were next connected by radial trabeculae to the parent cortex. Deposition of lamellar bone on the inner trabecular surfaces resulted in rows of primary osteons. Replacement of primary bone occurred only after 4 months of age and preferentially in the woven interstitial bone separating rows of primary osteons formed in the postnatal periosteal cortex. Resorption cavities and incompletely filled secondary osteons characterised bone of 1 and 2-y-old horses. Bone from horses older than 3 y contained several generations of secondary osteons, fewer resorption spaces and incompletely filled osteons, and had a greater portion of circumferentially oriented collagen fibres than bone from younger horses. Bone from horses older than 5 y had large resorption cavities characterised by irregular boundaries. We propose that the process of periosteal bone tissue apposition observed in growing foals be called ' saltatory primary osteonal bone formation' and that this process results in faster cortical expansion and larger total surface area for bone deposition than circumferential lamellar, simple primary osteonal, and plexiform mechanisms of periosteal bone formation. We speculate that bone from 1 and 2-y-old horses would be more susceptible to fatigue microdamage resulting from compressive loads because of high porosity, few completed secondary osteons and low proportion of circumferentially oriented collagen fibres.

UR - http://www.scopus.com/inward/record.url?scp=0027073273&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027073273&partnerID=8YFLogxK

M3 - Article

VL - 181

SP - 455

EP - 469

JO - Journal of Anatomy

JF - Journal of Anatomy

SN - 0021-8782

IS - 3

ER -