Glutathione depletion is a major determinant of inhaled naphthalene respiratory toxicity and naphthalene metabolism in mice

A. J. Phimister, M. G. Lee, D. Morin, Alan R Buckpitt, Charles Plopper

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Naphthalene (NA) is metabolized to highly reactive intermediates that are primarily detoxified by conjugation to glutathione (GSH). Intraperitoneal administration of naphthalene causes substantial loss of both hepatic and respiratory GSH, yet only respiratory tissues are injured in mice. The liver supplies GSH to other organs via the circulation, making it unclear whether respiratory GSH losses reflect in situ respiratory depletion or decreased hepatic supply. To address this concern, mice were exposed to naphthalene by inhalation (1.5-15 ppm; 2-4 h), thereby bypassing first-pass hepatic involvement. GSH levels and histopathology were monitored during the first 24 h after exposure. Half of the mice were given the GSH depletor diethylmaleate (DEM) 1 hour before naphthalene exposure. Lung and nasal GSH levels rapidly decreased (50-90%) in mice exposed to 15 ppm naphthalene, with cell necrosis throughout the respiratory tract becoming evident several hours later. Conversely, 1.5 ppm naphthalene caused moderate GSH loss and only injured the nasal olfactory epithelium. Neither naphthalene concentration depleted hepatic GSH. Animals pretreated with DEM showed significant GSH loss and injury in nasal and intrapulmonary airway epithelium at both naphthalene concentrations. DEM treatment, perhaps by causing significant GSH loss, decreased water-soluble naphthalene metabolite formation by 48% yet increased NA-protein adducts 193%. We conclude that (1) GSH depletion occurs in airways independent of hepatic function; (2) sufficient GSH is not supplied by the liver to maintain respiratory GSH pools, or to prevent injury from inhaled naphthalene; and (3)FISH loss precedes injury and increases protein adduct formation.

Original languageEnglish (US)
Pages (from-to)268-278
Number of pages11
JournalToxicological Sciences
Issue number1
StatePublished - Nov 2004


  • Glutathione (GSH)
  • High-performance liquid chromatography
  • HPLC
  • Naphthalene
  • P450 metabolism
  • Respiratory toxicity

ASJC Scopus subject areas

  • Toxicology


Dive into the research topics of 'Glutathione depletion is a major determinant of inhaled naphthalene respiratory toxicity and naphthalene metabolism in mice'. Together they form a unique fingerprint.

Cite this