Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina

Cassandra L. Ettinger, Jonathan A. Eisen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Fungi in the marine environment are often neglected as a research topic, despite that fungi having critical roles on land as decomposers, pathogens or endophytes. Here we used culture-dependent methods to survey the fungi associated with the seagrass, Zostera marina, also obtaining bacteria and oomycete isolates in the process. A total of 108 fungi, 40 bacteria and 2 oomycetes were isolated. These isolates were then taxonomically identified using a combination of molecular and phylogenetic methods. The majority of the fungal isolates were classified as belonging to the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes. Most fungal isolates were habitat generalists like Penicillium sp. and Cladosporium sp., but we also cultured a diverse set of rare taxa including possible habitat specialists like Colletotrichum sp. which may preferentially associate with Z. marina leaf tissue. Although the bulk of bacterial isolates were identified as being from known ubiquitous marine lineages, we also obtained several Actinomycetes isolates and a Phyllobacterium sp. We identified two oomycetes, another understudied group of marine microbial eukaryotes, as Halophytophthora sp. which may be opportunistic pathogens or saprophytes of Z. marina. Overall, this study generates a culture collection of fungi which adds to knowledge of Z. marina associated fungi and highlights a need for more investigation into the functional and evolutionary roles of microbial eukaryotes associated with seagrasses.

Original languageEnglish (US)
Pages (from-to)e0236135
JournalPloS one
Issue number7
StatePublished - 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina'. Together they form a unique fingerprint.

Cite this