From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system

Eren Gultepe, Jeffrey Green, Hien Nguyen, Jason Adams, Timothy Albertson, Ilias Tagkopoulos

Research output: Contribution to journalArticlepeer-review

102 Scopus citations


Objective: To develop a decision support system to identify patients at high risk for hyperlactatemia based upon routinely measured vital signs and laboratory studies. Materials and methods: Electronic health records of 741 adult patients at the University of California Davis Health System who met at least two systemic inflammatory response syndrome criteria were used to associate patients' vital signs, white blood cell count (WBC), with sepsis occurrence and mortality. Generative and discriminative classification (naïve Bayes, support vector machines, Gaussian mixture models, hidden Markov models) were used to integrate heterogeneous patient data and form a predictive tool for the inference of lactate level and mortality risk. Results: An accuracy of 0.99 and discriminability of 1.00 area under the receiver operating characteristic curve (AUC) for lactate level prediction was obtained when the vital signs and WBC measurements were analysed in a 24 h time bin. An accuracy of 0.73 and discriminability of 0.73 AUC for mortality prediction in patients with sepsis was achieved with only three features: median of lactate levels, mean arterial pressure, and median absolute deviation of the respiratory rate. Discussion: This study introduces a new scheme for the prediction of lactate levels and mortality risk from patient vital signs and WBC. Accurate prediction of both these variables can drive the appropriate response by clinical staff and thus may have important implications for patient health and treatment outcome. Conclusions: Effective predictions of lactate levels and mortality risk can be provided with a few clinical variables when the temporal aspect and variability of patient data are considered.

Original languageEnglish (US)
Pages (from-to)315-325
Number of pages11
JournalJournal of the American Medical Informatics Association
Issue number2
StatePublished - 2014

ASJC Scopus subject areas

  • Health Informatics


Dive into the research topics of 'From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system'. Together they form a unique fingerprint.

Cite this