From mesh generation to scientific visualization: An end-to-end approach to parallel supercomputing

Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak, Omar Ghattas, Kwan-Liu Ma, David R. O'Hallaron

Research output: Chapter in Book/Report/Conference proceedingConference contribution

106 Scopus citations


Parallel supercomputing has traditionally focused on the inner kernel of scientific simulations: the solver. The front and back ends of the simulation pipeline - -problem description and interpretation of the output - -have taken a back seat to the solver when it comes to attention paid to scalability and performance, and are often relegated to offline, sequential computation. As the largest simulations move beyond the realm of the terascale and into the petascale, this decomposition in tasks and platforms becomes increasingly untenable. We propose an end-to-end approach in which all simulation components - -meshing, partitioning, solver, and visualization - -are tightly coupled and execute in parallel with shared data structures and no intermediate I/O. We present our implementation of this new approach in the context of octree-based finite element simulation of earthquake ground motion. Performance evaluation on up to 2048 processors demonstrates the ability of the end-toend approach to overcome the scalability bottlenecks of the traditional approach.

Original languageEnglish (US)
Title of host publicationProceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06
StatePublished - Dec 1 2006

ASJC Scopus subject areas

  • Computer Science(all)


Dive into the research topics of 'From mesh generation to scientific visualization: An end-to-end approach to parallel supercomputing'. Together they form a unique fingerprint.

Cite this