Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight

N. D. Loh, C. Y. Hampton, A. V. Martin, D. Starodub, R. G. Sierra, A. Barty, A. Aquila, J. Schulz, L. Lomb, J. Steinbrener, R. L. Shoeman, S. Kassemeyer, C. Bostedt, J. Bozek, S. W. Epp, B. Erk, R. Hartmann, D. Rolles, A. Rudenko, B. RudekL. Foucar, N. Kimmel, G. Weidenspointner, G. Hauser, P. Holl, E. Pedersoli, M. Liang, M. M. Hunter, L. Gumprecht, N. Coppola, C. Wunderer, H. Graafsma, F. R.N.C. Maia, T. Ekeberg, M. Hantke, H. Fleckenstein, H. Hirsemann, K. Nass, T. A. White, H. J. Tobias, G. R. Farquar, W. H. Benner, S. P. Hau-Riege, C. Reich, A. Hartmann, H. Soltau, S. Marchesini, S. Bajt, M. Barthelmess, P. Bucksbaum, K. O. Hodgson, L. Strüder, J. Ullrich, Matthias Frank, I. Schlichting, H. N. Chapman, M. J. Bogan

Research output: Contribution to journalArticle

139 Citations (Scopus)

Abstract

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

Original languageEnglish (US)
Pages (from-to)513-517
Number of pages5
JournalNature
Volume486
Issue number7404
DOIs
StatePublished - Jun 28 2012
Externally publishedYes

Fingerprint

Fractals
Aerosols
Mass Spectrometry
X-Rays
Soot
Light
Synchrotrons
Particulate Matter
Energy Transfer
Hydrodynamics
Climate
Toxicology
Dilatation
Electron Microscopy
Lasers
Electrons
Ions
Amino Acids
Proteins

ASJC Scopus subject areas

  • General

Cite this

Loh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., ... Bogan, M. J. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513-517. https://doi.org/10.1038/nature11222

Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. / Loh, N. D.; Hampton, C. Y.; Martin, A. V.; Starodub, D.; Sierra, R. G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J.; Shoeman, R. L.; Kassemeyer, S.; Bostedt, C.; Bozek, J.; Epp, S. W.; Erk, B.; Hartmann, R.; Rolles, D.; Rudenko, A.; Rudek, B.; Foucar, L.; Kimmel, N.; Weidenspointner, G.; Hauser, G.; Holl, P.; Pedersoli, E.; Liang, M.; Hunter, M. M.; Gumprecht, L.; Coppola, N.; Wunderer, C.; Graafsma, H.; Maia, F. R.N.C.; Ekeberg, T.; Hantke, M.; Fleckenstein, H.; Hirsemann, H.; Nass, K.; White, T. A.; Tobias, H. J.; Farquar, G. R.; Benner, W. H.; Hau-Riege, S. P.; Reich, C.; Hartmann, A.; Soltau, H.; Marchesini, S.; Bajt, S.; Barthelmess, M.; Bucksbaum, P.; Hodgson, K. O.; Strüder, L.; Ullrich, J.; Frank, Matthias; Schlichting, I.; Chapman, H. N.; Bogan, M. J.

In: Nature, Vol. 486, No. 7404, 28.06.2012, p. 513-517.

Research output: Contribution to journalArticle

Loh, ND, Hampton, CY, Martin, AV, Starodub, D, Sierra, RG, Barty, A, Aquila, A, Schulz, J, Lomb, L, Steinbrener, J, Shoeman, RL, Kassemeyer, S, Bostedt, C, Bozek, J, Epp, SW, Erk, B, Hartmann, R, Rolles, D, Rudenko, A, Rudek, B, Foucar, L, Kimmel, N, Weidenspointner, G, Hauser, G, Holl, P, Pedersoli, E, Liang, M, Hunter, MM, Gumprecht, L, Coppola, N, Wunderer, C, Graafsma, H, Maia, FRNC, Ekeberg, T, Hantke, M, Fleckenstein, H, Hirsemann, H, Nass, K, White, TA, Tobias, HJ, Farquar, GR, Benner, WH, Hau-Riege, SP, Reich, C, Hartmann, A, Soltau, H, Marchesini, S, Bajt, S, Barthelmess, M, Bucksbaum, P, Hodgson, KO, Strüder, L, Ullrich, J, Frank, M, Schlichting, I, Chapman, HN & Bogan, MJ 2012, 'Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight', Nature, vol. 486, no. 7404, pp. 513-517. https://doi.org/10.1038/nature11222
Loh ND, Hampton CY, Martin AV, Starodub D, Sierra RG, Barty A et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature. 2012 Jun 28;486(7404):513-517. https://doi.org/10.1038/nature11222
Loh, N. D. ; Hampton, C. Y. ; Martin, A. V. ; Starodub, D. ; Sierra, R. G. ; Barty, A. ; Aquila, A. ; Schulz, J. ; Lomb, L. ; Steinbrener, J. ; Shoeman, R. L. ; Kassemeyer, S. ; Bostedt, C. ; Bozek, J. ; Epp, S. W. ; Erk, B. ; Hartmann, R. ; Rolles, D. ; Rudenko, A. ; Rudek, B. ; Foucar, L. ; Kimmel, N. ; Weidenspointner, G. ; Hauser, G. ; Holl, P. ; Pedersoli, E. ; Liang, M. ; Hunter, M. M. ; Gumprecht, L. ; Coppola, N. ; Wunderer, C. ; Graafsma, H. ; Maia, F. R.N.C. ; Ekeberg, T. ; Hantke, M. ; Fleckenstein, H. ; Hirsemann, H. ; Nass, K. ; White, T. A. ; Tobias, H. J. ; Farquar, G. R. ; Benner, W. H. ; Hau-Riege, S. P. ; Reich, C. ; Hartmann, A. ; Soltau, H. ; Marchesini, S. ; Bajt, S. ; Barthelmess, M. ; Bucksbaum, P. ; Hodgson, K. O. ; Strüder, L. ; Ullrich, J. ; Frank, Matthias ; Schlichting, I. ; Chapman, H. N. ; Bogan, M. J. / Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. In: Nature. 2012 ; Vol. 486, No. 7404. pp. 513-517.
@article{74dbdad4677f41e3a337c92e4cf2a557,
title = "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight",
abstract = "The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.",
author = "Loh, {N. D.} and Hampton, {C. Y.} and Martin, {A. V.} and D. Starodub and Sierra, {R. G.} and A. Barty and A. Aquila and J. Schulz and L. Lomb and J. Steinbrener and Shoeman, {R. L.} and S. Kassemeyer and C. Bostedt and J. Bozek and Epp, {S. W.} and B. Erk and R. Hartmann and D. Rolles and A. Rudenko and B. Rudek and L. Foucar and N. Kimmel and G. Weidenspointner and G. Hauser and P. Holl and E. Pedersoli and M. Liang and Hunter, {M. M.} and L. Gumprecht and N. Coppola and C. Wunderer and H. Graafsma and Maia, {F. R.N.C.} and T. Ekeberg and M. Hantke and H. Fleckenstein and H. Hirsemann and K. Nass and White, {T. A.} and Tobias, {H. J.} and Farquar, {G. R.} and Benner, {W. H.} and Hau-Riege, {S. P.} and C. Reich and A. Hartmann and H. Soltau and S. Marchesini and S. Bajt and M. Barthelmess and P. Bucksbaum and Hodgson, {K. O.} and L. Str{\"u}der and J. Ullrich and Matthias Frank and I. Schlichting and Chapman, {H. N.} and Bogan, {M. J.}",
year = "2012",
month = "6",
day = "28",
doi = "10.1038/nature11222",
language = "English (US)",
volume = "486",
pages = "513--517",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7404",

}

TY - JOUR

T1 - Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight

AU - Loh, N. D.

AU - Hampton, C. Y.

AU - Martin, A. V.

AU - Starodub, D.

AU - Sierra, R. G.

AU - Barty, A.

AU - Aquila, A.

AU - Schulz, J.

AU - Lomb, L.

AU - Steinbrener, J.

AU - Shoeman, R. L.

AU - Kassemeyer, S.

AU - Bostedt, C.

AU - Bozek, J.

AU - Epp, S. W.

AU - Erk, B.

AU - Hartmann, R.

AU - Rolles, D.

AU - Rudenko, A.

AU - Rudek, B.

AU - Foucar, L.

AU - Kimmel, N.

AU - Weidenspointner, G.

AU - Hauser, G.

AU - Holl, P.

AU - Pedersoli, E.

AU - Liang, M.

AU - Hunter, M. M.

AU - Gumprecht, L.

AU - Coppola, N.

AU - Wunderer, C.

AU - Graafsma, H.

AU - Maia, F. R.N.C.

AU - Ekeberg, T.

AU - Hantke, M.

AU - Fleckenstein, H.

AU - Hirsemann, H.

AU - Nass, K.

AU - White, T. A.

AU - Tobias, H. J.

AU - Farquar, G. R.

AU - Benner, W. H.

AU - Hau-Riege, S. P.

AU - Reich, C.

AU - Hartmann, A.

AU - Soltau, H.

AU - Marchesini, S.

AU - Bajt, S.

AU - Barthelmess, M.

AU - Bucksbaum, P.

AU - Hodgson, K. O.

AU - Strüder, L.

AU - Ullrich, J.

AU - Frank, Matthias

AU - Schlichting, I.

AU - Chapman, H. N.

AU - Bogan, M. J.

PY - 2012/6/28

Y1 - 2012/6/28

N2 - The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

AB - The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

UR - http://www.scopus.com/inward/record.url?scp=84863001091&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863001091&partnerID=8YFLogxK

U2 - 10.1038/nature11222

DO - 10.1038/nature11222

M3 - Article

C2 - 22739316

AN - SCOPUS:84863001091

VL - 486

SP - 513

EP - 517

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7404

ER -