Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill

J. B. German, Ralf Berger

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Metabolites of arachidonic acid are important regulators of biological function in a variety of mammalian tissues. We have demonstrated similar lipoxygenase enzyme activities in fish gills and mammalian lungs suggesting that their metabolites may have matching functions. Fish gills were investigated for their ability to generate dioxygenated metabolites of polyunsaturated fatty acids. Fatty acids, including arachidonic acid, were incubated with crude tissue homogenates and polar metabolites were extracted, derivatized and analyzed by high performance liquid chromatography, gas chromatography and mass spectrometry. The major dihydroxy metabolite of arachidonic acid was characterized as 8(LR), 15(LS)-dihydroxyeicosatetraenoic acid. This product was formed by the sequential action of the 15- and 12-lipoxygenases in the tissue. The formation of the dihydroxyeicosatetraenoic acid by crude tissue homogenates was significantly enhanced by the addition of 1 mM reduced glutathione. The metabolism of other polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, to dihydroxy acids was consistent with their relative ability to serve as substrates for the initial 15-lipoxygenase reaction.

Original languageEnglish (US)
Pages (from-to)849-853
Number of pages5
JournalLipids
Volume25
Issue number12
DOIs
StatePublished - Dec 1990

Fingerprint

Arachidonate 12-Lipoxygenase
Arachidonate 15-Lipoxygenase
Arachidonic Acids
Metabolites
lipoxygenase
Fish
gills
Fishes
Arachidonic Acid
metabolites
arachidonic acid
acids
Tissue
fish
Unsaturated Fatty Acids
Acids
polyunsaturated fatty acids
Eicosapentaenoic Acid
Lipoxygenase
Docosahexaenoic Acids

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry
  • Biochemistry, Genetics and Molecular Biology(all)
  • Food Science

Cite this

Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill. / German, J. B.; Berger, Ralf.

In: Lipids, Vol. 25, No. 12, 12.1990, p. 849-853.

Research output: Contribution to journalArticle

German, J. B. ; Berger, Ralf. / Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill. In: Lipids. 1990 ; Vol. 25, No. 12. pp. 849-853.
@article{2ae5f9fef27d4f4b89560ee1c9d7e544,
title = "Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill",
abstract = "Metabolites of arachidonic acid are important regulators of biological function in a variety of mammalian tissues. We have demonstrated similar lipoxygenase enzyme activities in fish gills and mammalian lungs suggesting that their metabolites may have matching functions. Fish gills were investigated for their ability to generate dioxygenated metabolites of polyunsaturated fatty acids. Fatty acids, including arachidonic acid, were incubated with crude tissue homogenates and polar metabolites were extracted, derivatized and analyzed by high performance liquid chromatography, gas chromatography and mass spectrometry. The major dihydroxy metabolite of arachidonic acid was characterized as 8(LR), 15(LS)-dihydroxyeicosatetraenoic acid. This product was formed by the sequential action of the 15- and 12-lipoxygenases in the tissue. The formation of the dihydroxyeicosatetraenoic acid by crude tissue homogenates was significantly enhanced by the addition of 1 mM reduced glutathione. The metabolism of other polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, to dihydroxy acids was consistent with their relative ability to serve as substrates for the initial 15-lipoxygenase reaction.",
author = "German, {J. B.} and Ralf Berger",
year = "1990",
month = "12",
doi = "10.1007/BF02535908",
language = "English (US)",
volume = "25",
pages = "849--853",
journal = "Lipids",
issn = "0024-4201",
publisher = "Springer Verlag",
number = "12",

}

TY - JOUR

T1 - Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill

AU - German, J. B.

AU - Berger, Ralf

PY - 1990/12

Y1 - 1990/12

N2 - Metabolites of arachidonic acid are important regulators of biological function in a variety of mammalian tissues. We have demonstrated similar lipoxygenase enzyme activities in fish gills and mammalian lungs suggesting that their metabolites may have matching functions. Fish gills were investigated for their ability to generate dioxygenated metabolites of polyunsaturated fatty acids. Fatty acids, including arachidonic acid, were incubated with crude tissue homogenates and polar metabolites were extracted, derivatized and analyzed by high performance liquid chromatography, gas chromatography and mass spectrometry. The major dihydroxy metabolite of arachidonic acid was characterized as 8(LR), 15(LS)-dihydroxyeicosatetraenoic acid. This product was formed by the sequential action of the 15- and 12-lipoxygenases in the tissue. The formation of the dihydroxyeicosatetraenoic acid by crude tissue homogenates was significantly enhanced by the addition of 1 mM reduced glutathione. The metabolism of other polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, to dihydroxy acids was consistent with their relative ability to serve as substrates for the initial 15-lipoxygenase reaction.

AB - Metabolites of arachidonic acid are important regulators of biological function in a variety of mammalian tissues. We have demonstrated similar lipoxygenase enzyme activities in fish gills and mammalian lungs suggesting that their metabolites may have matching functions. Fish gills were investigated for their ability to generate dioxygenated metabolites of polyunsaturated fatty acids. Fatty acids, including arachidonic acid, were incubated with crude tissue homogenates and polar metabolites were extracted, derivatized and analyzed by high performance liquid chromatography, gas chromatography and mass spectrometry. The major dihydroxy metabolite of arachidonic acid was characterized as 8(LR), 15(LS)-dihydroxyeicosatetraenoic acid. This product was formed by the sequential action of the 15- and 12-lipoxygenases in the tissue. The formation of the dihydroxyeicosatetraenoic acid by crude tissue homogenates was significantly enhanced by the addition of 1 mM reduced glutathione. The metabolism of other polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexaenoic acid, to dihydroxy acids was consistent with their relative ability to serve as substrates for the initial 15-lipoxygenase reaction.

UR - http://www.scopus.com/inward/record.url?scp=0025661908&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025661908&partnerID=8YFLogxK

U2 - 10.1007/BF02535908

DO - 10.1007/BF02535908

M3 - Article

AN - SCOPUS:0025661908

VL - 25

SP - 849

EP - 853

JO - Lipids

JF - Lipids

SN - 0024-4201

IS - 12

ER -