Flow cytometry and FISH to investigate allele-specific replication timing and homologous association of imprinted chromosomes.

Janine M LaSalle, M. Lalande

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Chromosome replication banding studies show that homologous regions on a pair of autosomes generally replicate at the same time in S phase (1). Izumikawa et al. first observed that this was not the case for the imprinted chromosomal region 15q11-q13 (2). This observation has been confirmed in other replication banding studies (3) as well by the fluorescence in situ hybridization (FISH) replication assay (4-9). The latter technique has also been used to observe DNA replication asynchrony in association with allelic inactivation of genes such as those encoding olfactory receptors and the cytokine, interleukin 2 (10,11). The latter genes are not imprinted but display random silencing of an allele in individual cells. In imprinted regions, DNA replication was generally observed to occur earlier on the paternal homologue (5,6,9,12,13). The patterns of allele-specific replication in the cells of Prader- Willi (PWS) and Angelman syndrome (AS) patients, however, have generally been synchronous (5,6,14). Furthermore, an investigation of the kinetics of allele-specific replication timing in the GABRB3/A5 cluster on 15q11-13 revealed that cells from PWS and AS have lost the strict replication timing observed on the parental chromosomes of normal cells (12). These results suggested the requirement of a biparental contribution for the regulation of replication asynchrony and lead to the hypothesis that allelic cross-talk, perhaps via pairing of homologous chromosomes, might play a role in the imprinting process.

Original languageEnglish (US)
Pages (from-to)181-192
Number of pages12
JournalMethods in molecular biology (Clifton, N.J.)
Volume181
StatePublished - 2001

Fingerprint

Fluorescence In Situ Hybridization
Flow Cytometry
Chromosomes
Alleles
Angelman Syndrome
DNA Replication
Odorant Receptors
Chromosome Banding
Chromosome Pairing
Prader-Willi Syndrome
Gene Silencing
S Phase
Interleukin-10
Interleukin-2
Cytokines
Genes

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{bf53f112ddfe459ea3b904084b252d15,
title = "Flow cytometry and FISH to investigate allele-specific replication timing and homologous association of imprinted chromosomes.",
abstract = "Chromosome replication banding studies show that homologous regions on a pair of autosomes generally replicate at the same time in S phase (1). Izumikawa et al. first observed that this was not the case for the imprinted chromosomal region 15q11-q13 (2). This observation has been confirmed in other replication banding studies (3) as well by the fluorescence in situ hybridization (FISH) replication assay (4-9). The latter technique has also been used to observe DNA replication asynchrony in association with allelic inactivation of genes such as those encoding olfactory receptors and the cytokine, interleukin 2 (10,11). The latter genes are not imprinted but display random silencing of an allele in individual cells. In imprinted regions, DNA replication was generally observed to occur earlier on the paternal homologue (5,6,9,12,13). The patterns of allele-specific replication in the cells of Prader- Willi (PWS) and Angelman syndrome (AS) patients, however, have generally been synchronous (5,6,14). Furthermore, an investigation of the kinetics of allele-specific replication timing in the GABRB3/A5 cluster on 15q11-13 revealed that cells from PWS and AS have lost the strict replication timing observed on the parental chromosomes of normal cells (12). These results suggested the requirement of a biparental contribution for the regulation of replication asynchrony and lead to the hypothesis that allelic cross-talk, perhaps via pairing of homologous chromosomes, might play a role in the imprinting process.",
author = "LaSalle, {Janine M} and M. Lalande",
year = "2001",
language = "English (US)",
volume = "181",
pages = "181--192",
journal = "Methods in molecular biology (Clifton, N.J.)",
issn = "1064-3745",
publisher = "Humana Press",

}

TY - JOUR

T1 - Flow cytometry and FISH to investigate allele-specific replication timing and homologous association of imprinted chromosomes.

AU - LaSalle, Janine M

AU - Lalande, M.

PY - 2001

Y1 - 2001

N2 - Chromosome replication banding studies show that homologous regions on a pair of autosomes generally replicate at the same time in S phase (1). Izumikawa et al. first observed that this was not the case for the imprinted chromosomal region 15q11-q13 (2). This observation has been confirmed in other replication banding studies (3) as well by the fluorescence in situ hybridization (FISH) replication assay (4-9). The latter technique has also been used to observe DNA replication asynchrony in association with allelic inactivation of genes such as those encoding olfactory receptors and the cytokine, interleukin 2 (10,11). The latter genes are not imprinted but display random silencing of an allele in individual cells. In imprinted regions, DNA replication was generally observed to occur earlier on the paternal homologue (5,6,9,12,13). The patterns of allele-specific replication in the cells of Prader- Willi (PWS) and Angelman syndrome (AS) patients, however, have generally been synchronous (5,6,14). Furthermore, an investigation of the kinetics of allele-specific replication timing in the GABRB3/A5 cluster on 15q11-13 revealed that cells from PWS and AS have lost the strict replication timing observed on the parental chromosomes of normal cells (12). These results suggested the requirement of a biparental contribution for the regulation of replication asynchrony and lead to the hypothesis that allelic cross-talk, perhaps via pairing of homologous chromosomes, might play a role in the imprinting process.

AB - Chromosome replication banding studies show that homologous regions on a pair of autosomes generally replicate at the same time in S phase (1). Izumikawa et al. first observed that this was not the case for the imprinted chromosomal region 15q11-q13 (2). This observation has been confirmed in other replication banding studies (3) as well by the fluorescence in situ hybridization (FISH) replication assay (4-9). The latter technique has also been used to observe DNA replication asynchrony in association with allelic inactivation of genes such as those encoding olfactory receptors and the cytokine, interleukin 2 (10,11). The latter genes are not imprinted but display random silencing of an allele in individual cells. In imprinted regions, DNA replication was generally observed to occur earlier on the paternal homologue (5,6,9,12,13). The patterns of allele-specific replication in the cells of Prader- Willi (PWS) and Angelman syndrome (AS) patients, however, have generally been synchronous (5,6,14). Furthermore, an investigation of the kinetics of allele-specific replication timing in the GABRB3/A5 cluster on 15q11-13 revealed that cells from PWS and AS have lost the strict replication timing observed on the parental chromosomes of normal cells (12). These results suggested the requirement of a biparental contribution for the regulation of replication asynchrony and lead to the hypothesis that allelic cross-talk, perhaps via pairing of homologous chromosomes, might play a role in the imprinting process.

UR - http://www.scopus.com/inward/record.url?scp=33646125161&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646125161&partnerID=8YFLogxK

M3 - Article

C2 - 12843450

AN - SCOPUS:33646125161

VL - 181

SP - 181

EP - 192

JO - Methods in molecular biology (Clifton, N.J.)

JF - Methods in molecular biology (Clifton, N.J.)

SN - 1064-3745

ER -