Flexibility of DNA.

Research output: Contribution to journalArticle

872 Citations (Scopus)

Abstract

Both microscopic and macroscopic models of DNA flexibility should lead to the same quantitative description of the elastic properties of the DNA helix. This belief is reinforced by the fact that essentially all experimental (solution) studies to date support the macroscopic, elastic model. The performance of microscopic models can therefore be checked by their ability to produce the correct macroscopic quantities (P and C). To most carefully address the influence of such factors as base sequence, DNA damage, and drug or protein interaction on the flexibility of DNA, methods are required that are most sensitive for DNA molecules of less than 500-1000 bp. The use of molecules in this size range will maximize the signal due to the structural alteration as well as facilitate the construction of DNA sequences of any desired arrangement. I have emphasized three such methods and summarized their strengths and weaknesses; however, their concurrent application to the determination of DNA flexibility provides an important check of self-consistency. These studies have indicated that the persistence length of DNA in buffers of moderate salt concentration is 450-500 A. Synthetic DNA is now readily available, and many procedures for the construction and cloning of DNA molecules of defined length and sequence (107-108a) are in common use. The availability of restriction fragments of precisely defined length has transformed the study of the physical (particularly hydrodynamic) properties of such molecules, since the hitherto pervasive problem of length polydispersity has been eliminated. Sheared, sonicated, or otherwise abused calf thymus (or other) DNAs should no longer be considered acceptable materials for physical studies. Many studies of bending and torsional fluctuations in DNA have been excluded from this discussion because the DNA samples used were not precisely defined. The torsional elastic constant of DNA has been fairly well established as approximately 3.0 x 10(-19) erg-cm, mainly through a combination of elegant theoretical and experimental studies of topoisomer distributions in circular DNA molecules. The other general approach to the determination of the torsional elastic constant, luminescence decay, is still burdened by the poor characterization of the DNA used in many of the experimental studies as well as by some continued theoretical uncertainties.(ABSTRACT TRUNCATED AT 400 WORDS)

Original languageEnglish (US)
Pages (from-to)265-286
Number of pages22
JournalAnnual Review of Biophysics and Biophysical Chemistry
Volume17
StatePublished - 1988
Externally publishedYes

Fingerprint

DNA
Molecules
DNA sequences
Elastic constants
Thymus
Circular DNA
Cloning
Polydispersity
Hydrodynamics
Luminescence
Thymus Gland
DNA Damage
Uncertainty
Organism Cloning
Buffers
Theoretical Models
Salts
Availability
Proteins

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics

Cite this

Flexibility of DNA. / Hagerman, Paul J.

In: Annual Review of Biophysics and Biophysical Chemistry, Vol. 17, 1988, p. 265-286.

Research output: Contribution to journalArticle

@article{06a2ce1b5e11410abec0a90385480d7d,
title = "Flexibility of DNA.",
abstract = "Both microscopic and macroscopic models of DNA flexibility should lead to the same quantitative description of the elastic properties of the DNA helix. This belief is reinforced by the fact that essentially all experimental (solution) studies to date support the macroscopic, elastic model. The performance of microscopic models can therefore be checked by their ability to produce the correct macroscopic quantities (P and C). To most carefully address the influence of such factors as base sequence, DNA damage, and drug or protein interaction on the flexibility of DNA, methods are required that are most sensitive for DNA molecules of less than 500-1000 bp. The use of molecules in this size range will maximize the signal due to the structural alteration as well as facilitate the construction of DNA sequences of any desired arrangement. I have emphasized three such methods and summarized their strengths and weaknesses; however, their concurrent application to the determination of DNA flexibility provides an important check of self-consistency. These studies have indicated that the persistence length of DNA in buffers of moderate salt concentration is 450-500 A. Synthetic DNA is now readily available, and many procedures for the construction and cloning of DNA molecules of defined length and sequence (107-108a) are in common use. The availability of restriction fragments of precisely defined length has transformed the study of the physical (particularly hydrodynamic) properties of such molecules, since the hitherto pervasive problem of length polydispersity has been eliminated. Sheared, sonicated, or otherwise abused calf thymus (or other) DNAs should no longer be considered acceptable materials for physical studies. Many studies of bending and torsional fluctuations in DNA have been excluded from this discussion because the DNA samples used were not precisely defined. The torsional elastic constant of DNA has been fairly well established as approximately 3.0 x 10(-19) erg-cm, mainly through a combination of elegant theoretical and experimental studies of topoisomer distributions in circular DNA molecules. The other general approach to the determination of the torsional elastic constant, luminescence decay, is still burdened by the poor characterization of the DNA used in many of the experimental studies as well as by some continued theoretical uncertainties.(ABSTRACT TRUNCATED AT 400 WORDS)",
author = "Hagerman, {Paul J}",
year = "1988",
language = "English (US)",
volume = "17",
pages = "265--286",
journal = "Annual Review of Biophysics",
issn = "1936-122X",
publisher = "Annual Reviews Inc.",

}

TY - JOUR

T1 - Flexibility of DNA.

AU - Hagerman, Paul J

PY - 1988

Y1 - 1988

N2 - Both microscopic and macroscopic models of DNA flexibility should lead to the same quantitative description of the elastic properties of the DNA helix. This belief is reinforced by the fact that essentially all experimental (solution) studies to date support the macroscopic, elastic model. The performance of microscopic models can therefore be checked by their ability to produce the correct macroscopic quantities (P and C). To most carefully address the influence of such factors as base sequence, DNA damage, and drug or protein interaction on the flexibility of DNA, methods are required that are most sensitive for DNA molecules of less than 500-1000 bp. The use of molecules in this size range will maximize the signal due to the structural alteration as well as facilitate the construction of DNA sequences of any desired arrangement. I have emphasized three such methods and summarized their strengths and weaknesses; however, their concurrent application to the determination of DNA flexibility provides an important check of self-consistency. These studies have indicated that the persistence length of DNA in buffers of moderate salt concentration is 450-500 A. Synthetic DNA is now readily available, and many procedures for the construction and cloning of DNA molecules of defined length and sequence (107-108a) are in common use. The availability of restriction fragments of precisely defined length has transformed the study of the physical (particularly hydrodynamic) properties of such molecules, since the hitherto pervasive problem of length polydispersity has been eliminated. Sheared, sonicated, or otherwise abused calf thymus (or other) DNAs should no longer be considered acceptable materials for physical studies. Many studies of bending and torsional fluctuations in DNA have been excluded from this discussion because the DNA samples used were not precisely defined. The torsional elastic constant of DNA has been fairly well established as approximately 3.0 x 10(-19) erg-cm, mainly through a combination of elegant theoretical and experimental studies of topoisomer distributions in circular DNA molecules. The other general approach to the determination of the torsional elastic constant, luminescence decay, is still burdened by the poor characterization of the DNA used in many of the experimental studies as well as by some continued theoretical uncertainties.(ABSTRACT TRUNCATED AT 400 WORDS)

AB - Both microscopic and macroscopic models of DNA flexibility should lead to the same quantitative description of the elastic properties of the DNA helix. This belief is reinforced by the fact that essentially all experimental (solution) studies to date support the macroscopic, elastic model. The performance of microscopic models can therefore be checked by their ability to produce the correct macroscopic quantities (P and C). To most carefully address the influence of such factors as base sequence, DNA damage, and drug or protein interaction on the flexibility of DNA, methods are required that are most sensitive for DNA molecules of less than 500-1000 bp. The use of molecules in this size range will maximize the signal due to the structural alteration as well as facilitate the construction of DNA sequences of any desired arrangement. I have emphasized three such methods and summarized their strengths and weaknesses; however, their concurrent application to the determination of DNA flexibility provides an important check of self-consistency. These studies have indicated that the persistence length of DNA in buffers of moderate salt concentration is 450-500 A. Synthetic DNA is now readily available, and many procedures for the construction and cloning of DNA molecules of defined length and sequence (107-108a) are in common use. The availability of restriction fragments of precisely defined length has transformed the study of the physical (particularly hydrodynamic) properties of such molecules, since the hitherto pervasive problem of length polydispersity has been eliminated. Sheared, sonicated, or otherwise abused calf thymus (or other) DNAs should no longer be considered acceptable materials for physical studies. Many studies of bending and torsional fluctuations in DNA have been excluded from this discussion because the DNA samples used were not precisely defined. The torsional elastic constant of DNA has been fairly well established as approximately 3.0 x 10(-19) erg-cm, mainly through a combination of elegant theoretical and experimental studies of topoisomer distributions in circular DNA molecules. The other general approach to the determination of the torsional elastic constant, luminescence decay, is still burdened by the poor characterization of the DNA used in many of the experimental studies as well as by some continued theoretical uncertainties.(ABSTRACT TRUNCATED AT 400 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0023746243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023746243&partnerID=8YFLogxK

M3 - Article

C2 - 3293588

AN - SCOPUS:0023746243

VL - 17

SP - 265

EP - 286

JO - Annual Review of Biophysics

JF - Annual Review of Biophysics

SN - 1936-122X

ER -