Fine structure histopathology of Labyrinthitis ossificans in the Gerbil model

Vishad Nabili, Steven P. Tinling, Hilary A Brodie

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.

Original languageEnglish (US)
Pages (from-to)161-166
Number of pages6
JournalAnnals of Otology, Rhinology and Laryngology
Volume114
Issue number2
StatePublished - Feb 2005

Fingerprint

Labyrinthitis
Gerbillinae
Spiral Ligament of Cochlea
Cochlea
Stria Vascularis
Organ of Corti
Osteogenesis
Spiral Ganglion
Connective Tissue
Capsules
Ear
Cochlear Duct
Penicillin G Procaine
Scala Tympani
Bone and Bones
Spinal Injections
Inner Ear
Streptococcus pneumoniae
Osteoblasts
Plastics

Keywords

  • Electron microscopy
  • Histopathology
  • Labyrinthitis ossificans
  • Meningitis

ASJC Scopus subject areas

  • Otorhinolaryngology

Cite this

Fine structure histopathology of Labyrinthitis ossificans in the Gerbil model. / Nabili, Vishad; Tinling, Steven P.; Brodie, Hilary A.

In: Annals of Otology, Rhinology and Laryngology, Vol. 114, No. 2, 02.2005, p. 161-166.

Research output: Contribution to journalArticle

@article{c8773b2ab5dc422b86e888988416090b,
title = "Fine structure histopathology of Labyrinthitis ossificans in the Gerbil model",
abstract = "Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.",
keywords = "Electron microscopy, Histopathology, Labyrinthitis ossificans, Meningitis",
author = "Vishad Nabili and Tinling, {Steven P.} and Brodie, {Hilary A}",
year = "2005",
month = "2",
language = "English (US)",
volume = "114",
pages = "161--166",
journal = "Annals of Otology, Rhinology and Laryngology",
issn = "0003-4894",
publisher = "Annals Publishing Company",
number = "2",

}

TY - JOUR

T1 - Fine structure histopathology of Labyrinthitis ossificans in the Gerbil model

AU - Nabili, Vishad

AU - Tinling, Steven P.

AU - Brodie, Hilary A

PY - 2005/2

Y1 - 2005/2

N2 - Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.

AB - Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.

KW - Electron microscopy

KW - Histopathology

KW - Labyrinthitis ossificans

KW - Meningitis

UR - http://www.scopus.com/inward/record.url?scp=13844289307&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=13844289307&partnerID=8YFLogxK

M3 - Article

VL - 114

SP - 161

EP - 166

JO - Annals of Otology, Rhinology and Laryngology

JF - Annals of Otology, Rhinology and Laryngology

SN - 0003-4894

IS - 2

ER -