Femtosecond dark-field imaging with an X-ray free electron laser

A. V. Martin, N. D. Loh, C. Y. Hampton, R. G. Sierra, F. Wang, A. Aquila, S. Bajt, M. Barthelmess, C. Bostedt, J. D. Bozek, N. Coppola, S. W. Epp, B. Erk, H. Fleckenstein, L. Foucar, Matthias Frank, H. Graafsma, L. Gumprecht, A. Hartmann, R. HartmannG. Hauser, H. Hirsemann, P. Holl, S. Kassemeyer, N. Kimmel, M. Liang, L. Lomb, F. R.N.C. Maia, S. Marchesini, K. Nass, E. Pedersoli, C. Reich, D. Rolles, B. Rudek, A. Rudenko, J. Schulz, R. L. Shoeman, H. Soltau, D. Starodub, J. Steinbrener, F. Stellato, L. Strüder, J. Ullrich, G. Weidenspointner, T. A. White, C. B. Wunderer, A. Barty, I. Schlichting, M. J. Bogan, H. N. Chapman

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.

Original languageEnglish (US)
Pages (from-to)13501-13512
Number of pages12
JournalOptics Express
Volume20
Issue number12
DOIs
StatePublished - Jun 4 2012
Externally publishedYes

Fingerprint

free electron lasers
particulates
micrometers
harnesses
coherent light
soot
viruses
bacteria
shot
lasers
light sources
x rays
diffraction patterns
gold
low frequencies
microscopy
cells

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Martin, A. V., Loh, N. D., Hampton, C. Y., Sierra, R. G., Wang, F., Aquila, A., ... Chapman, H. N. (2012). Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express, 20(12), 13501-13512. https://doi.org/10.1364/OE.20.013501

Femtosecond dark-field imaging with an X-ray free electron laser. / Martin, A. V.; Loh, N. D.; Hampton, C. Y.; Sierra, R. G.; Wang, F.; Aquila, A.; Bajt, S.; Barthelmess, M.; Bostedt, C.; Bozek, J. D.; Coppola, N.; Epp, S. W.; Erk, B.; Fleckenstein, H.; Foucar, L.; Frank, Matthias; Graafsma, H.; Gumprecht, L.; Hartmann, A.; Hartmann, R.; Hauser, G.; Hirsemann, H.; Holl, P.; Kassemeyer, S.; Kimmel, N.; Liang, M.; Lomb, L.; Maia, F. R.N.C.; Marchesini, S.; Nass, K.; Pedersoli, E.; Reich, C.; Rolles, D.; Rudek, B.; Rudenko, A.; Schulz, J.; Shoeman, R. L.; Soltau, H.; Starodub, D.; Steinbrener, J.; Stellato, F.; Strüder, L.; Ullrich, J.; Weidenspointner, G.; White, T. A.; Wunderer, C. B.; Barty, A.; Schlichting, I.; Bogan, M. J.; Chapman, H. N.

In: Optics Express, Vol. 20, No. 12, 04.06.2012, p. 13501-13512.

Research output: Contribution to journalArticle

Martin, AV, Loh, ND, Hampton, CY, Sierra, RG, Wang, F, Aquila, A, Bajt, S, Barthelmess, M, Bostedt, C, Bozek, JD, Coppola, N, Epp, SW, Erk, B, Fleckenstein, H, Foucar, L, Frank, M, Graafsma, H, Gumprecht, L, Hartmann, A, Hartmann, R, Hauser, G, Hirsemann, H, Holl, P, Kassemeyer, S, Kimmel, N, Liang, M, Lomb, L, Maia, FRNC, Marchesini, S, Nass, K, Pedersoli, E, Reich, C, Rolles, D, Rudek, B, Rudenko, A, Schulz, J, Shoeman, RL, Soltau, H, Starodub, D, Steinbrener, J, Stellato, F, Strüder, L, Ullrich, J, Weidenspointner, G, White, TA, Wunderer, CB, Barty, A, Schlichting, I, Bogan, MJ & Chapman, HN 2012, 'Femtosecond dark-field imaging with an X-ray free electron laser', Optics Express, vol. 20, no. 12, pp. 13501-13512. https://doi.org/10.1364/OE.20.013501
Martin AV, Loh ND, Hampton CY, Sierra RG, Wang F, Aquila A et al. Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express. 2012 Jun 4;20(12):13501-13512. https://doi.org/10.1364/OE.20.013501
Martin, A. V. ; Loh, N. D. ; Hampton, C. Y. ; Sierra, R. G. ; Wang, F. ; Aquila, A. ; Bajt, S. ; Barthelmess, M. ; Bostedt, C. ; Bozek, J. D. ; Coppola, N. ; Epp, S. W. ; Erk, B. ; Fleckenstein, H. ; Foucar, L. ; Frank, Matthias ; Graafsma, H. ; Gumprecht, L. ; Hartmann, A. ; Hartmann, R. ; Hauser, G. ; Hirsemann, H. ; Holl, P. ; Kassemeyer, S. ; Kimmel, N. ; Liang, M. ; Lomb, L. ; Maia, F. R.N.C. ; Marchesini, S. ; Nass, K. ; Pedersoli, E. ; Reich, C. ; Rolles, D. ; Rudek, B. ; Rudenko, A. ; Schulz, J. ; Shoeman, R. L. ; Soltau, H. ; Starodub, D. ; Steinbrener, J. ; Stellato, F. ; Strüder, L. ; Ullrich, J. ; Weidenspointner, G. ; White, T. A. ; Wunderer, C. B. ; Barty, A. ; Schlichting, I. ; Bogan, M. J. ; Chapman, H. N. / Femtosecond dark-field imaging with an X-ray free electron laser. In: Optics Express. 2012 ; Vol. 20, No. 12. pp. 13501-13512.
@article{b6870d325df847088e27884bbea95859,
title = "Femtosecond dark-field imaging with an X-ray free electron laser",
abstract = "The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.",
author = "Martin, {A. V.} and Loh, {N. D.} and Hampton, {C. Y.} and Sierra, {R. G.} and F. Wang and A. Aquila and S. Bajt and M. Barthelmess and C. Bostedt and Bozek, {J. D.} and N. Coppola and Epp, {S. W.} and B. Erk and H. Fleckenstein and L. Foucar and Matthias Frank and H. Graafsma and L. Gumprecht and A. Hartmann and R. Hartmann and G. Hauser and H. Hirsemann and P. Holl and S. Kassemeyer and N. Kimmel and M. Liang and L. Lomb and Maia, {F. R.N.C.} and S. Marchesini and K. Nass and E. Pedersoli and C. Reich and D. Rolles and B. Rudek and A. Rudenko and J. Schulz and Shoeman, {R. L.} and H. Soltau and D. Starodub and J. Steinbrener and F. Stellato and L. Str{\"u}der and J. Ullrich and G. Weidenspointner and White, {T. A.} and Wunderer, {C. B.} and A. Barty and I. Schlichting and Bogan, {M. J.} and Chapman, {H. N.}",
year = "2012",
month = "6",
day = "4",
doi = "10.1364/OE.20.013501",
language = "English (US)",
volume = "20",
pages = "13501--13512",
journal = "Optics Express",
issn = "1094-4087",
publisher = "The Optical Society",
number = "12",

}

TY - JOUR

T1 - Femtosecond dark-field imaging with an X-ray free electron laser

AU - Martin, A. V.

AU - Loh, N. D.

AU - Hampton, C. Y.

AU - Sierra, R. G.

AU - Wang, F.

AU - Aquila, A.

AU - Bajt, S.

AU - Barthelmess, M.

AU - Bostedt, C.

AU - Bozek, J. D.

AU - Coppola, N.

AU - Epp, S. W.

AU - Erk, B.

AU - Fleckenstein, H.

AU - Foucar, L.

AU - Frank, Matthias

AU - Graafsma, H.

AU - Gumprecht, L.

AU - Hartmann, A.

AU - Hartmann, R.

AU - Hauser, G.

AU - Hirsemann, H.

AU - Holl, P.

AU - Kassemeyer, S.

AU - Kimmel, N.

AU - Liang, M.

AU - Lomb, L.

AU - Maia, F. R.N.C.

AU - Marchesini, S.

AU - Nass, K.

AU - Pedersoli, E.

AU - Reich, C.

AU - Rolles, D.

AU - Rudek, B.

AU - Rudenko, A.

AU - Schulz, J.

AU - Shoeman, R. L.

AU - Soltau, H.

AU - Starodub, D.

AU - Steinbrener, J.

AU - Stellato, F.

AU - Strüder, L.

AU - Ullrich, J.

AU - Weidenspointner, G.

AU - White, T. A.

AU - Wunderer, C. B.

AU - Barty, A.

AU - Schlichting, I.

AU - Bogan, M. J.

AU - Chapman, H. N.

PY - 2012/6/4

Y1 - 2012/6/4

N2 - The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.

AB - The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.

UR - http://www.scopus.com/inward/record.url?scp=84863730620&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863730620&partnerID=8YFLogxK

U2 - 10.1364/OE.20.013501

DO - 10.1364/OE.20.013501

M3 - Article

C2 - 22714377

AN - SCOPUS:84863730620

VL - 20

SP - 13501

EP - 13512

JO - Optics Express

JF - Optics Express

SN - 1094-4087

IS - 12

ER -