Abstract
Purpose We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; (i) Fast Quantitative Susceptibility Mapping (QSM), (ii) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and (III) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results The closed-form solution developed for regularized QSM allows processing of a three-dimensional volume under 5 s, the proposed lipid suppression algorithm takes under 1 s to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 s, all running in Matlab using a standard workstation. Conclusion For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality.
Original language | English (US) |
---|---|
Pages (from-to) | 181-191 |
Number of pages | 11 |
Journal | Journal of Magnetic Resonance Imaging |
Volume | 40 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2014 |
Externally published | Yes |
Keywords
- diffusion imaging
- lipid suppression
- regularization
- spectroscopic imaging
- susceptibility mapping
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging