Extraordinarily Stable Amyloid Fibrils Engineered from Structurally Defined β-Solenoid Proteins

Zeyu Peng, Maria D.R. Peralta, Michael D. Toney

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


The self-assembly of biological molecules into ordered nanostructures is an attractive method for fabricating novel nanomaterials. Nucleic acid-based nanostructures suffer from limitations to functionalization and stability. Alternatively, protein-based nanostructures have advantageous chemical properties, but design facility lags behind that of nucleic acids. Structurally defined fibrils engineered from β-solenoid proteins (BSPs) form under mild conditions [Peralta, M. D. R., et al. (2015) ACS Nano 9, 449-463] and are good candidates for novel nanomaterials because of the defined sequence-to-structure relationship and tunable properties. Here, the stability of two types of engineered fibrils was examined using circular dichroism spectroscopy, transmission electron microscopy, and electrophoresis. Both are stable to at least 90 °C, and one survives autoclaving. They are stable toward organic solvents, urea, and pH extremes. One is even stable in 2% sodium dodecyl sulfate with heating. The fibrils show variable resistance to proteolytic digestion: one is resistant to trypsin, but chymotrypsin and proteinase K degrade both. These results show that BSPs have excellent potential for bottom-up design of rugged, functional, amyloid-based nanomaterials.

Original languageEnglish (US)
Pages (from-to)6041-6050
Number of pages10
Issue number45
StatePublished - Nov 14 2017

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Extraordinarily Stable Amyloid Fibrils Engineered from Structurally Defined β-Solenoid Proteins'. Together they form a unique fingerprint.

Cite this