Expression of constitutive androstane receptor, hepatic nuclear factor 4α, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver

Matthew Wortham, Maciej Czerwinski, Lin He, Andrew Parkinson, Yu-Jui Yvonne Wan

Research output: Contribution to journalArticle

108 Scopus citations


Identification of genetic variation predictive of clearance rate of a wide variety of prescription drugs could lead to cost-effective personalized medicine. Here we identify regulatory genes whose variable expression level among individuals may have widespread effects upon clearance rate of a variety of drugs. Twenty liver samples with variable CYP3A activity were profiled for expression level and activity of xenobiotic metabolism genes as well as genes involved in the regulation thereof. Regulatory genes whose expression level accounted for the highest degree of collinearity among expression levels of xenobiotic metabolism genes were identified as possible master regulators of drug clearance rate. Significant linear correlations (p < 0.05) were identified among mRNA levels of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, MRP2, OATP2, P450 oxidoreductase (POR), and UDP-glucuronosyltranferase 1A1, suggesting that these xenobiotic metabolism genes are coregulated at the transcriptional level. Using partial regression analysis, constitutive androstane receptor (CAR) and hepatic nuclear factor 4α (HNF4α) were identified as the nuclear receptors whose expression levels are most strongly associated with expression of coregulated xenobiotic metabolism genes. POR expression level, which is also associated with CAR and HNF4α expression level, was found to be strongly associated with the activity of many cytochromes P450. Thus, interindividual variation in the expression level of CAR, HNF4α, and POR probably determines variation in expression and activity of a broad scope of xenobiotic metabolism genes and, accordingly, clearance rate of a variety of xenobiotics. Identification of polymorphisms in these candidate master regulator genes that account for their variable expression among individuals may yield readily detectable biomarkers that could serve as predictors of xenobiotic clearance rate.

Original languageEnglish (US)
Pages (from-to)1700-1710
Number of pages11
JournalDrug Metabolism and Disposition
Issue number9
StatePublished - Sep 2007
Externally publishedYes


ASJC Scopus subject areas

  • Pharmacology
  • Toxicology

Cite this