Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

Sarah E. McKenney, Anita Nosratieh, Dale Gelskey, Kai Yang, Shin Ying Huang, Lin Chen, John M Boone

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Purpose: Beam-shaping or "bow tie" (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method. The BT filter thickness estimates resulting from the dual energy scans on the breast CT system were equivalent to the manufacturing specifications. The clinical CT evaluation produced data conceptually similar to previous computer simulations and plausible relative attenuation profiles were observed. Conclusions: The COBRA method is a fast and accurate method for BT filter characterization, which requires a simple experimental setup in a clinical environment. Because of the ease of data acquisition, multienergy scans can be acquired which allow characterization of the BT filter thickness.

Original languageEnglish (US)
Pages (from-to)1406-1415
Number of pages10
JournalMedical Physics
Volume38
Issue number3
DOIs
StatePublished - Mar 2011

Fingerprint

X-Rays
Computer Simulation
Breast
Radiation

Keywords

  • bow tie filter
  • CT
  • real-time dosimetry

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe. / McKenney, Sarah E.; Nosratieh, Anita; Gelskey, Dale; Yang, Kai; Huang, Shin Ying; Chen, Lin; Boone, John M.

In: Medical Physics, Vol. 38, No. 3, 03.2011, p. 1406-1415.

Research output: Contribution to journalArticle

McKenney, Sarah E. ; Nosratieh, Anita ; Gelskey, Dale ; Yang, Kai ; Huang, Shin Ying ; Chen, Lin ; Boone, John M. / Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe. In: Medical Physics. 2011 ; Vol. 38, No. 3. pp. 1406-1415.
@article{c606a5bd070e4cf8aad58a2f3ae24ed4,
title = "Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe",
abstract = "Purpose: Beam-shaping or {"}bow tie{"} (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method. The BT filter thickness estimates resulting from the dual energy scans on the breast CT system were equivalent to the manufacturing specifications. The clinical CT evaluation produced data conceptually similar to previous computer simulations and plausible relative attenuation profiles were observed. Conclusions: The COBRA method is a fast and accurate method for BT filter characterization, which requires a simple experimental setup in a clinical environment. Because of the ease of data acquisition, multienergy scans can be acquired which allow characterization of the BT filter thickness.",
keywords = "bow tie filter, CT, real-time dosimetry",
author = "McKenney, {Sarah E.} and Anita Nosratieh and Dale Gelskey and Kai Yang and Huang, {Shin Ying} and Lin Chen and Boone, {John M}",
year = "2011",
month = "3",
doi = "10.1118/1.3551990",
language = "English (US)",
volume = "38",
pages = "1406--1415",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "3",

}

TY - JOUR

T1 - Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

AU - McKenney, Sarah E.

AU - Nosratieh, Anita

AU - Gelskey, Dale

AU - Yang, Kai

AU - Huang, Shin Ying

AU - Chen, Lin

AU - Boone, John M

PY - 2011/3

Y1 - 2011/3

N2 - Purpose: Beam-shaping or "bow tie" (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method. The BT filter thickness estimates resulting from the dual energy scans on the breast CT system were equivalent to the manufacturing specifications. The clinical CT evaluation produced data conceptually similar to previous computer simulations and plausible relative attenuation profiles were observed. Conclusions: The COBRA method is a fast and accurate method for BT filter characterization, which requires a simple experimental setup in a clinical environment. Because of the ease of data acquisition, multienergy scans can be acquired which allow characterization of the BT filter thickness.

AB - Purpose: Beam-shaping or "bow tie" (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method. The BT filter thickness estimates resulting from the dual energy scans on the breast CT system were equivalent to the manufacturing specifications. The clinical CT evaluation produced data conceptually similar to previous computer simulations and plausible relative attenuation profiles were observed. Conclusions: The COBRA method is a fast and accurate method for BT filter characterization, which requires a simple experimental setup in a clinical environment. Because of the ease of data acquisition, multienergy scans can be acquired which allow characterization of the BT filter thickness.

KW - bow tie filter

KW - CT

KW - real-time dosimetry

UR - http://www.scopus.com/inward/record.url?scp=79952171984&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952171984&partnerID=8YFLogxK

U2 - 10.1118/1.3551990

DO - 10.1118/1.3551990

M3 - Article

C2 - 21520852

AN - SCOPUS:79952171984

VL - 38

SP - 1406

EP - 1415

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 3

ER -