Ex vivo biomechanical comparison of a 3.5mm locking compression plate applied cranially and a 2.7mm locking compression plate applied medially in a gap model of the distal aspect of the canine radius

Justin M. Uhl, Amy Kapatkin, Tanya C. Garcia, Susan M Stover

Research output: Contribution to journalArticle

5 Scopus citations


Objective: To compare a medially applied 2.7mm locking compression plate (LCP) to a cranially applied 3.5mm LCP in a cadaveric distal radial fracture gap model. Study Design: In vitro mechanical testing of paired cadaveric limbs Sample Population: Paired radii (n=8) stabilized with either a 2.7mm LCP medially or a 3.5mm LCP cranially. Methods: Simulated distal radial comminuted fractures were created and stabilized with an LCP plate on the cranial surface in 1 limb, and on the medial surface in the contralateral limb. Gap stiffness, gap strain, and failure properties were compared between cranial and medial plate positions. Limb constructs were axially loaded, cyclically through 4 conditions that allowed mediolateral or craniocaudal bending at walk and trot loads, before monotonic failure loading. The effects of plate position on mechanical variables were assessed using paired t-tests. Results: Gap stiffness was greater for cranial plate constructs than medial plate constructs for axial loading with mediolateral bending, but lower with craniocaudal bending. However, in loading that facilitated craniocaudal bending the medial plate construct also had bending apparent in the mediolateral direction. Gap strains for the different conditions followed similar trends as stiffness. Cranial plate constructs had significantly higher monotonic stiffness, yield, and failure loads. Conclusion: The larger, cranially applied LCP was biomechanically superior to the smaller, medially applied LCP in our distal radial fracture gap model, however the medial plate was superior to the cranial plate in cyclic loading allowing craniocaudal bending.

Original languageEnglish (US)
Pages (from-to)840-846
Number of pages7
JournalVeterinary Surgery
Issue number7
StatePublished - Oct 2013


ASJC Scopus subject areas

  • veterinary(all)

Cite this