Evidence that a metabolic microcompartment contains and recycles private cofactor pools

Douglas L. Huseby, John R. Roth

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.

Original languageEnglish (US)
Pages (from-to)2864-2879
Number of pages16
JournalJournal of Bacteriology
Volume195
Issue number12
DOIs
StatePublished - 2013

Fingerprint

Acetaldehyde
Acetyl Coenzyme A
Ethanolamine
Coenzyme A
NAD
Enzymes
Ethanolamine Ammonia-Lyase
Ethanol
Salmonella enterica
Poisons
Recycling
Operon
Metabolic Networks and Pathways
Mutation

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Cite this

Evidence that a metabolic microcompartment contains and recycles private cofactor pools. / Huseby, Douglas L.; Roth, John R.

In: Journal of Bacteriology, Vol. 195, No. 12, 2013, p. 2864-2879.

Research output: Contribution to journalArticle

Huseby, Douglas L. ; Roth, John R. / Evidence that a metabolic microcompartment contains and recycles private cofactor pools. In: Journal of Bacteriology. 2013 ; Vol. 195, No. 12. pp. 2864-2879.
@article{d9f2ab51eb1b488ba1da94851f6678c0,
title = "Evidence that a metabolic microcompartment contains and recycles private cofactor pools",
abstract = "Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.",
author = "Huseby, {Douglas L.} and Roth, {John R.}",
year = "2013",
doi = "10.1128/JB.02179-12",
language = "English (US)",
volume = "195",
pages = "2864--2879",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - Evidence that a metabolic microcompartment contains and recycles private cofactor pools

AU - Huseby, Douglas L.

AU - Roth, John R.

PY - 2013

Y1 - 2013

N2 - Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.

AB - Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.

UR - http://www.scopus.com/inward/record.url?scp=84880017088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880017088&partnerID=8YFLogxK

U2 - 10.1128/JB.02179-12

DO - 10.1128/JB.02179-12

M3 - Article

C2 - 23585538

AN - SCOPUS:84880017088

VL - 195

SP - 2864

EP - 2879

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 12

ER -