Evaluation of thiol-based antioxidant therapeutics in cystic fibrosis sputum: Focus on myeloperoxidase

Vihas T. Vasu, Sharon J. De Cruz, Jessica S. Houghton, Keri A. Hayakawa, Brian M Morrissey, Carroll E Cross, Jason P. Eiserich

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Neutrophil-dependent reactions catalysed by myeloperoxidase (MPO) are thought to play important roles in the pulmonary pathobiology of cystic fibrosis (CF). Aerosolized thiol antioxidants such as glutathione (GSH) and N-acetylcysteine (NAC) are currently being utilized as therapeutics to modify CF respiratory tract oxidative processes. This study hypothesized that MPO in CF airway lining fluids may be a target of such therapeutics. MPO activity in sputum from 21 adult CF patients was found to be inversely associated with lung function (FEV1). In contrast, systemic inflammation (assessed by plasma C-reactive protein) was not correlated with lung function. Ex vivo studies revealed that GSH and NAC effectively scavenged N-chloramines in sputum and inhibited sputum MPO activity with potency exquisitely dependent upon MPO activity levels. Detailed kinetic analyses revealed that NAC and GSH inhibit MPO by distinct mechanisms. Activation of the key pro-inflammatory transcription factor NF-κB in cultured HBE1 cells was inhibited by GSH. The findings reveal that MPO activity and its reactive products represent useful predictors of the doses of inhaled thiol antioxidants required to ameliorate airway oxidative stress and inflammation in CF patients and provide mechanistic insight into the antioxidative/anti-inflammatory mechanisms of action of GSH and NAC when administered into the CF lung.

Original languageEnglish (US)
Pages (from-to)165-176
Number of pages12
JournalFree Radical Research
Volume45
Issue number2
DOIs
StatePublished - Feb 2011

Keywords

  • Antioxidants
  • Cystic fibrosis
  • Glutathione
  • Individualized medicine
  • Myeloperoxidase
  • N-acetyl cysteine
  • N-chloramines
  • Sputum

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Evaluation of thiol-based antioxidant therapeutics in cystic fibrosis sputum: Focus on myeloperoxidase'. Together they form a unique fingerprint.

  • Cite this