Essential fatty acids and immune response

D. Hwang

Research output: Contribution to journalArticlepeer-review

238 Scopus citations


The implication that essential fatty acids (EFA) can affect immune response was based on the observation that EFA deficiency can accentuate or improve symptoms of certain autoimmune diseases in animals, and that supplementation of linoleic acid to animals reversed such effects. Furthermore, treatment of animals with cyclooxygenase inhibitors abrogated the effect of linoleic acid. Administration of cyclooxygenase inhibitors to animals enhanced both cell-mediated and humoral immune responses. In vitro studies have shown that prostaglandin E (PGE) group inhibits both T and B lymphocyte functions; it is suggested that effects of EFA on immune response are, in part, mediated through eicosanoids. Growing evidence now suggests that the PGE group of prostaglandins can serve as a negative feedback modulator of immune response. However, in vitro effects of other cyclooxygenase-derived products, such as PGI2 and thromboxane A2 (TXA2), have not been well established, perhaps because of their instability in aqueous media. Unlike the PGE group, some of lipoxygenase-derived products of arachidonic acid have shown immunostimulatory effects, as assessed by lymphokine production in vitro. Whether such effects can be seen in vivo remains to be determined. Some lipoxygenase-derived products with strong chemotactic action may indirectly influence immune response by modulating the population of antigen-presenting macrophages in tissues. Thus, the net effect of eicosanoids synthesized in macrophages on modulating immune response may depend on relative amounts of cyclooxygenase-derived products as compared with lipoxygenase-derived products. Macrophages are the major source of eicosanoids among immunocompetent cells. The profile of eicosanoids, produced in vitro by macrophages, varies with type of stimuli and anatomical sites. It can also be affected by the fatty acid composition of tissue lipids, which in turn can be modified by the composition of dietary EFA. Whether manipulating dietary EFA can modulate immune response in normal humans and animals needs to be determined.

Original languageEnglish (US)
Pages (from-to)2052-2061
Number of pages10
JournalFASEB Journal
Issue number9
StatePublished - 1989
Externally publishedYes

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology


Dive into the research topics of 'Essential fatty acids and immune response'. Together they form a unique fingerprint.

Cite this