TY - JOUR
T1 - (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity
AU - Contreras, Telma C.
AU - Ricciardi, Elisabetta
AU - Cremonini, Eleonora
AU - Oteiza, Patricia I.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - An increased permeability of the intestinal barrier is proposed as a major event in the pathophysiology of inflammatory bowel diseases (IBD). Tumor necrosis alpha (TNFα) plays a central role in IBD pathogenesis, in part promoting tight function (TJ) barrier dysfunction. Food extracts enriched in (-)-epicatechin (EC) prevent the development or improve the progression of IBD in animal models. This study investigated the capacity of EC to inhibit TNFα-induced permeabilization of Caco-2 cell monolayers, characterizing the underlying mechanisms. Caco-2 cells differentiated into intestinal epithelial cells were incubated in the absence/presence of TNFα, with or without the addition of 0.5-5 μM EC. TNFα triggered cell monolayer permeabilization, decreasing transepithelial electrical resistance (TEER) and increasing the paracellular transport of fluorescein sulfonic acid. The permeabilizing effects of TNFα were not due to Caco-2 cell apoptosis as evaluated by DNA fragmentation, caspase 3 and 9 activation, and cell morphology. EC prevented TNFα-triggered Caco-2 monolayer permeabilization and acted inhibiting the associated: (i) NADPH oxidase (NOX)-mediated increased oxidant production, (ii) NF-κB (IκBα phosphorylation, p50 and RelA nuclear transport, and nuclear NF-κB-DNA binding) and ERK1/2 activation, (iii) increased myosin light kinase expression, and decreased TJ protein ZO-1 levels. In summary, EC prevented TNFα-mediated Caco-2 cell barrier permeabilization in part through the inhibition of NOX/NF-κB activation and downstream TJ disruption. Diets rich in EC could contribute to ameliorate IBD-associated increased intestinal permeability.
AB - An increased permeability of the intestinal barrier is proposed as a major event in the pathophysiology of inflammatory bowel diseases (IBD). Tumor necrosis alpha (TNFα) plays a central role in IBD pathogenesis, in part promoting tight function (TJ) barrier dysfunction. Food extracts enriched in (-)-epicatechin (EC) prevent the development or improve the progression of IBD in animal models. This study investigated the capacity of EC to inhibit TNFα-induced permeabilization of Caco-2 cell monolayers, characterizing the underlying mechanisms. Caco-2 cells differentiated into intestinal epithelial cells were incubated in the absence/presence of TNFα, with or without the addition of 0.5-5 μM EC. TNFα triggered cell monolayer permeabilization, decreasing transepithelial electrical resistance (TEER) and increasing the paracellular transport of fluorescein sulfonic acid. The permeabilizing effects of TNFα were not due to Caco-2 cell apoptosis as evaluated by DNA fragmentation, caspase 3 and 9 activation, and cell morphology. EC prevented TNFα-triggered Caco-2 monolayer permeabilization and acted inhibiting the associated: (i) NADPH oxidase (NOX)-mediated increased oxidant production, (ii) NF-κB (IκBα phosphorylation, p50 and RelA nuclear transport, and nuclear NF-κB-DNA binding) and ERK1/2 activation, (iii) increased myosin light kinase expression, and decreased TJ protein ZO-1 levels. In summary, EC prevented TNFα-mediated Caco-2 cell barrier permeabilization in part through the inhibition of NOX/NF-κB activation and downstream TJ disruption. Diets rich in EC could contribute to ameliorate IBD-associated increased intestinal permeability.
KW - (-)-Epicatechin
KW - Inflammation
KW - Intestinal barrier
KW - Intestinal permeability
KW - NADPH oxidase
KW - Tight junction
UR - http://www.scopus.com/inward/record.url?scp=84925941642&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925941642&partnerID=8YFLogxK
U2 - 10.1016/j.abb.2015.01.024
DO - 10.1016/j.abb.2015.01.024
M3 - Article
C2 - 25795020
AN - SCOPUS:84925941642
VL - 573
SP - 84
EP - 91
JO - Archives of Biochemistry and Biophysics
JF - Archives of Biochemistry and Biophysics
SN - 0003-9861
ER -