TY - JOUR
T1 - Enhancing the brightness of high current electron guns
AU - Barletta, W. A.
AU - Birx, D.
AU - Boyd, J. K.
AU - Caporaso, George J
AU - Weir, J. T.
PY - 1986/9/1
Y1 - 1986/9/1
N2 - Concepts such as the two-beam accelerator offer the possibility of translating pulsed power technology into a form useful to the design of high luminosity accelerators for high-energy physics applications. Realization of the promise of these concepts will require the design of electron guns which are optimized with respect to beam brightness at current levels of approximately 1 kA. Because high luminosity implies accelerator operation at high repetition rates, the high-current beam source must be designed so that the beam does not intercept the electrodes. In our investigations of electron gun configurations, we have found that the brightness of a given source is set by practical design choices such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. To investigate the sensitivity of beam brightness to these factors in a manner suitable for modelling transient phenomena at the beam head, we have developed a Darwin approximation particle code, DPC. The main component in our experimental program is a readily modified electron gun that allows us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MV/cm. We have also developed several diagnostics suitable for measuring the brightness of intense, low-emittance beams.
AB - Concepts such as the two-beam accelerator offer the possibility of translating pulsed power technology into a form useful to the design of high luminosity accelerators for high-energy physics applications. Realization of the promise of these concepts will require the design of electron guns which are optimized with respect to beam brightness at current levels of approximately 1 kA. Because high luminosity implies accelerator operation at high repetition rates, the high-current beam source must be designed so that the beam does not intercept the electrodes. In our investigations of electron gun configurations, we have found that the brightness of a given source is set by practical design choices such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. To investigate the sensitivity of beam brightness to these factors in a manner suitable for modelling transient phenomena at the beam head, we have developed a Darwin approximation particle code, DPC. The main component in our experimental program is a readily modified electron gun that allows us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MV/cm. We have also developed several diagnostics suitable for measuring the brightness of intense, low-emittance beams.
UR - http://www.scopus.com/inward/record.url?scp=46149132873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46149132873&partnerID=8YFLogxK
U2 - 10.1016/0168-9002(86)90864-8
DO - 10.1016/0168-9002(86)90864-8
M3 - Article
AN - SCOPUS:46149132873
VL - 250
SP - 80
EP - 86
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
IS - 1-2
ER -