TY - JOUR
T1 - Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior
AU - Genestine, Matthieu
AU - Lin, Lulu
AU - Durens, Madel
AU - Yan, Yan
AU - Jiang, Yiqin
AU - Prem, Smrithi
AU - Bailoor, Kunal
AU - Kelly, Brian
AU - Sonsalla, Patricia K.
AU - Matteson, Paul G.
AU - Silverman, Jill L
AU - Crawley, Jacqueline
AU - Millonig, James H.
AU - DiCicco-Bloom, Emanuel
PY - 2015/6/5
Y1 - 2015/6/5
N2 - Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2- knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ~35% in forebrain, they were increased 40-75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5-15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.
AB - Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2- knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ~35% in forebrain, they were increased 40-75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5-15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.
UR - http://www.scopus.com/inward/record.url?scp=84943790821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943790821&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddv301
DO - 10.1093/hmg/ddv301
M3 - Article
C2 - 26220976
AN - SCOPUS:84943790821
VL - 24
SP - 5805
EP - 5827
JO - Human Molecular Genetics
JF - Human Molecular Genetics
SN - 0964-6906
IS - 20
ER -