Effects of Sc and Y substitution on the structure and thermoelectric properties of Yb14MnSb11

Jason H. Grebenkemper, Sebastian Klemenz, Barbara Albert, Sabah K. Bux, Susan M. Kauzlarich

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Yb14MnSb11 is the most efficient bulk p-type thermoelectric material for high temperature applications. Materials with Y and Sc substitutions in Yb14MnSb11 were made both in Sn-flux and by ball milling. These small 3+ rare earth (RE) cations were introduced with the goal of providing chemical pressure on the structure. The RE3+ cation is smaller than Yb2+ and also donates one additional electron to this p-type semiconductor. In Yb14-x RE x MnSb11 (RE = Sc, Y) the maximum x was about 0.5. X-ray diffraction experiments on the single crystals obtained from Sn-flux showed that Sc preferentially substitutes for Yb(1) and Yb(3), and decreases the size of the unit cell by about 0.3%. Y substitutes on all Yb sites and increases the size of the unit cell by about 0.2%. Samples with Yb14-x RE x MnSb11 (x~0.3) were prepared via powder metallurgy and spark plasma sintering for transport and thermal conductivity measurements. Electron microprobe of the Sc-substituted sample showed small regions (≤1 μm) containing greater amounts of Sc, and X-ray powder diffraction of the ball milled Sc sample could be fitted as phase pure Yb14-x Sc x MnSb11. Y-substituted samples showed larger regions of excess Y in electron microprobe, and small amounts of Yb4Sb3 in X-ray powder diffraction. The Sc sample has slightly reduced carrier concentration over optimized Yb14MnSb11, while the Y samples have even lower carrier concentrations. These carrier concentrations lead to comparable resistivity to Yb14MnSb11 in the Sc-substituted material, and higher resistivities in the Y-substituted material. All materials had similar Seebeck coefficients that slightly exceed Yb14MnSb11 at high temperatures, with the Sc-substituted sample having the highest despite having a higher carrier concentration. Sc-substituted samples also had a slightly higher thermal conductivity over the Y-substituted samples, which had comparable thermal conductivity to Yb14MnSb11. The zT values of the Sc and Y substituted samples are similar (zT1000K~0.8), however below that of Yb14MnSb11 due to the compensation of Seebeck and resistivity.

Original languageEnglish (US)
JournalJournal of Solid State Chemistry
StateAccepted/In press - Dec 6 2015


  • Chemical pressure
  • Rare earth compounds
  • Thermoelectric material
  • Zintl

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Physical and Theoretical Chemistry
  • Ceramics and Composites
  • Electronic, Optical and Magnetic Materials
  • Materials Chemistry


Dive into the research topics of 'Effects of Sc and Y substitution on the structure and thermoelectric properties of Yb14MnSb11'. Together they form a unique fingerprint.

Cite this