Effects of hypoxia on the discharge of group III and IV muscle afferents in cats

J. M. Hill, J. G. Pickar, Mark D Parrish, Marc P Kaufman

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate- anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.

Original languageEnglish (US)
Pages (from-to)2524-2529
Number of pages6
JournalJournal of Applied Physiology
Volume73
Issue number6
StatePublished - 1992

Fingerprint

Cats
Muscles
Hypoxia
Blood Group Antigens
Muscle Contraction
Thigh
Reflex
Hydrogen
Lactic Acid
Skeletal Muscle
Perfusion
Ions

Keywords

  • exercise
  • mismatch
  • muscular contraction
  • oxygen lack
  • thin-fiber sensory nerves

ASJC Scopus subject areas

  • Endocrinology
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Effects of hypoxia on the discharge of group III and IV muscle afferents in cats. / Hill, J. M.; Pickar, J. G.; Parrish, Mark D; Kaufman, Marc P.

In: Journal of Applied Physiology, Vol. 73, No. 6, 1992, p. 2524-2529.

Research output: Contribution to journalArticle

@article{4173887800f2416b83b93090cf22ba6f,
title = "Effects of hypoxia on the discharge of group III and IV muscle afferents in cats",
abstract = "The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate- anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.",
keywords = "exercise, mismatch, muscular contraction, oxygen lack, thin-fiber sensory nerves",
author = "Hill, {J. M.} and Pickar, {J. G.} and Parrish, {Mark D} and Kaufman, {Marc P}",
year = "1992",
language = "English (US)",
volume = "73",
pages = "2524--2529",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Effects of hypoxia on the discharge of group III and IV muscle afferents in cats

AU - Hill, J. M.

AU - Pickar, J. G.

AU - Parrish, Mark D

AU - Kaufman, Marc P

PY - 1992

Y1 - 1992

N2 - The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate- anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.

AB - The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate- anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.

KW - exercise

KW - mismatch

KW - muscular contraction

KW - oxygen lack

KW - thin-fiber sensory nerves

UR - http://www.scopus.com/inward/record.url?scp=0027068241&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027068241&partnerID=8YFLogxK

M3 - Article

VL - 73

SP - 2524

EP - 2529

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 6

ER -