Effects of hypertension on aortic antioxidant status in human abdominal aneurysmal and occlusive disease

G. C. Hunter, M. A. Dubick, Carl L Keen, C. D. Eskelson

Research output: Contribution to journalArticle

53 Scopus citations

Abstract

The biochemical mechanisms by which hypertension accelerates atherosclerosis and increases the risk of aortic aneurysm rupture are poorly understood. This study evaluates the effects of hypertension on aortic trace element concentrations and antioxidant status in tissue removed from 26 normotensive (NT) and 20 hypertensive (HT) patients. Twenty-seven of 46 patients (59%) had aneurysmal (AA), and 19 of 46 (41%) had occlusive disease (OD). Aortic iron concentrations were markedly higher in both OD and AA tissue compared with controls. A similar trend was observed with copper concentrations, with the highest elevations observed in HT AA tissues. No significant differences were observed in zinc concentrations, except that HT AA aorta had significantly lower zinc levels than either OD or control tissue. Aortic ascorbic acid concentrations in diseased aorta were lower than those of controls, but independent of blood pressure. Copper-zinc-superoxide dismutase activity was similarly reduced, with the lowest activity observed in diseased aorta from HT patients. Only HT AA aorta had significantly higher manganese-superoxide dismutase activity than controls. The aortas of patients with AA had significantly lower amounts of elastin and greater elastase activity than either controls or those with OD. However, the differences were independent of blood pressure. Hypertensive patients with OD and AA had 31% more and 27% less aortic collagen, respectively, than their NT counterparts (P < 0.05). These data suggest that the reduction in aortic collagen and elastin in HT patients with AA compared with their NT counterparts may explain the larger size of aneurysms and predispose to their eventual rupture. Furthermore, the diminished antioxidant status associated with HT predisposes to lipid peroxidation, which contributes to the acceleration of these processes. Our studies were conducted in patients with established aortic aneurysmal and occlusive disease. Whether these observations are pertinent to the pathogenesis of AA and OD remains unclear and merits further study.

Original languageEnglish (US)
Pages (from-to)273-279
Number of pages7
JournalProceedings of the Society for Experimental Biology and Medicine
Volume196
Issue number3
StatePublished - 1991

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Effects of hypertension on aortic antioxidant status in human abdominal aneurysmal and occlusive disease'. Together they form a unique fingerprint.

  • Cite this