Abstract
The K+ channel blocker 4-aminopyridine (4-AP) causes epileptiform activity in in vitro preparations and is a potent convulsant in animals and man. In mice, 4-AP produces behavioral activation, clonic limb movements and wild running, followed by tonic hindlimb extension and death (ED97, 13.3 mg/kg s.c.). We evaluated the ability of a series of anticonvulsant drugs to protect against 4-AP-induced seizures using lethality as the endpoint. Drugs with a phenytoin-like profile of activity were protective with ED50 values (all in mg/kg i.p.) of 34.4 for phenytoin, 18.6 for carbamazepine, 26.9 for felbamate, and 41.5 for zonisamide. Phenobarbital and valproate also protected against 4-AP-induced seizures and lethality (ED50s, 30.6 and 301, respectively). In contrast the NMDA antagonists (±)-CPP and (+)-MK-801 were inactive as were the GABA enhancers diazepam, vigabatrin and tiagabine; the antiabsence drug ethosuximide; and the L-type Ca2+ channel blocker nimodipine. We conclude that drugs like phenytoin which block seizure spread are effective antagonists of seizures induced by K+ channel blockade. Drugs with specific actions on other cellular targets may be weak or inactive, presumably because they are unable to attenuate the spread of intense (non-NMDA receptor mediated) excitation evoked by 4-AP.
Original language | English (US) |
---|---|
Pages (from-to) | 9-16 |
Number of pages | 8 |
Journal | Epilepsy Research |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - 1992 |
Externally published | Yes |
Keywords
- 4-Aminopyridine
- Anticonvulsant drugs
- Experimental seizures
- Potassium channel blocker
ASJC Scopus subject areas
- Clinical Neurology
- Pediatrics, Perinatology, and Child Health
- Neurology