Abstract
Anionic, monolayer-protected gold nanoparticles (AuNPs) have been shown to nondisruptively penetrate cellular membranes. Here, we show that a critical first step in the penetration process is potentially the fusion of such AuNPs with lipid bilayers. Free energy calculations, experiments on unilamellar and multilamellar vesicles, and cell studies all support this hypothesis. Furthermore, we show that fusion is only favorable for AuNPs with core diameters below a critical size that depends on the monolayer composition.
Original language | English (US) |
---|---|
Pages (from-to) | 4060-4067 |
Number of pages | 8 |
Journal | Nano Letters |
Volume | 13 |
Issue number | 9 |
DOIs | |
State | Published - Sep 11 2013 |
Externally published | Yes |
Keywords
- cell penetration
- gold nanoparticle
- lipid bilayer
- membrane insertion
- snorkeling
- surface monolayer
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering