Effect of Isovalent Substitution on the Structure and Properties of the Zintl Phase Solid Solution Eu7Cd4Sb8-xAsx (2 ≤ x ≤ 5)

Joya Cooley, Nasrin Kazem, Julia V. Zaikina, James C. Fettinger, Susan M. Kauzlarich

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

A novel Zintl phase structure type, Eu7Cd4Sb8-xAsx (x = 2, 3, 4, and 5), with the general formula Eu7Cd4Pn8 (Pn = mixed occupancy Sb and As), was synthesized by molten tin flux reaction. Its structure was determined using single-crystal X-ray diffraction methods. This structure type is only preserved for 2 ≤ x ≤ 5 under our experimental conditions, and efforts to synthesize samples with x <2 or x > 5 resulted in other structure types. The mixed occupancy Sb and As can be thought of as a pseudoatom whose ideal size, in this range of Sb/As ratios, fits the structure. The title phase crystallizes in the I-centered monoclinic space group I2/m (No. 12, Z = 4) with unit cell parameters ranging as follows: a = 19.7116(17)-19.4546(13) Å, b = 4.6751(4)-4.6149(3) Å, c = 24.157(2)-23.871(15) Å, and β = 95.8798(1)-96.016(5)°, depending on the Sb/As ratio. The structure can be described as parallel double pentagonal tubes resulting from Cd-Pn and Pn-Pn bonding. These double pentagons are formed through corner sharing of the Cd-centered CdPn4 tetrahedra and a Pn-Pn interaction from two adjacent CdPn4 tetrahedra. This structure type is closely related to the Sr11Cd6Sb12 structure type as both share the same bonding features of Pn-Pn bonding and double pentagonal tubes. Electron microprobe analysis confirms the composition of these new Zintl solid solution phases. The As exhibits preferential substitution on specific sites, and site specificity trends are supported by lowest energy models from theoretical calculations. Theoretical calculations also predict that Sb-rich compounds should be metallic or semimetallic and that they should become more insulating as As content increases. Members of the solid-solution order ferromagnetically between 5 and 6 K and exhibit relatively low electrical resistivity between 50 and 300 K, ranging from ∼0.57 to ∼26 mΩ·cm, increasing with increasing As content.

Original languageEnglish (US)
Pages (from-to)11767-11775
Number of pages9
JournalInorganic Chemistry
Volume54
Issue number24
DOIs
StatePublished - Nov 25 2015

Fingerprint

Solid solutions
Substitution reactions
solid solutions
substitutes
tetrahedrons
tubes
Tin
Electron probe microanalysis
Phase structure
Molten materials
tin
Single crystals
Fluxes
trends
X ray diffraction
electrical resistivity
single crystals
cells
Chemical analysis
diffraction

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Physical and Theoretical Chemistry

Cite this

Effect of Isovalent Substitution on the Structure and Properties of the Zintl Phase Solid Solution Eu7Cd4Sb8-xAsx (2 ≤ x ≤ 5). / Cooley, Joya; Kazem, Nasrin; Zaikina, Julia V.; Fettinger, James C.; Kauzlarich, Susan M.

In: Inorganic Chemistry, Vol. 54, No. 24, 25.11.2015, p. 11767-11775.

Research output: Contribution to journalArticle

Cooley, Joya ; Kazem, Nasrin ; Zaikina, Julia V. ; Fettinger, James C. ; Kauzlarich, Susan M. / Effect of Isovalent Substitution on the Structure and Properties of the Zintl Phase Solid Solution Eu7Cd4Sb8-xAsx (2 ≤ x ≤ 5). In: Inorganic Chemistry. 2015 ; Vol. 54, No. 24. pp. 11767-11775.
@article{3e4fcb11ee434619a88381446e438acb,
title = "Effect of Isovalent Substitution on the Structure and Properties of the Zintl Phase Solid Solution Eu7Cd4Sb8-xAsx (2 ≤ x ≤ 5)",
abstract = "A novel Zintl phase structure type, Eu7Cd4Sb8-xAsx (x = 2, 3, 4, and 5), with the general formula Eu7Cd4Pn8 (Pn = mixed occupancy Sb and As), was synthesized by molten tin flux reaction. Its structure was determined using single-crystal X-ray diffraction methods. This structure type is only preserved for 2 ≤ x ≤ 5 under our experimental conditions, and efforts to synthesize samples with x <2 or x > 5 resulted in other structure types. The mixed occupancy Sb and As can be thought of as a pseudoatom whose ideal size, in this range of Sb/As ratios, fits the structure. The title phase crystallizes in the I-centered monoclinic space group I2/m (No. 12, Z = 4) with unit cell parameters ranging as follows: a = 19.7116(17)-19.4546(13) {\AA}, b = 4.6751(4)-4.6149(3) {\AA}, c = 24.157(2)-23.871(15) {\AA}, and β = 95.8798(1)-96.016(5)°, depending on the Sb/As ratio. The structure can be described as parallel double pentagonal tubes resulting from Cd-Pn and Pn-Pn bonding. These double pentagons are formed through corner sharing of the Cd-centered CdPn4 tetrahedra and a Pn-Pn interaction from two adjacent CdPn4 tetrahedra. This structure type is closely related to the Sr11Cd6Sb12 structure type as both share the same bonding features of Pn-Pn bonding and double pentagonal tubes. Electron microprobe analysis confirms the composition of these new Zintl solid solution phases. The As exhibits preferential substitution on specific sites, and site specificity trends are supported by lowest energy models from theoretical calculations. Theoretical calculations also predict that Sb-rich compounds should be metallic or semimetallic and that they should become more insulating as As content increases. Members of the solid-solution order ferromagnetically between 5 and 6 K and exhibit relatively low electrical resistivity between 50 and 300 K, ranging from ∼0.57 to ∼26 mΩ·cm, increasing with increasing As content.",
author = "Joya Cooley and Nasrin Kazem and Zaikina, {Julia V.} and Fettinger, {James C.} and Kauzlarich, {Susan M.}",
year = "2015",
month = "11",
day = "25",
doi = "10.1021/acs.inorgchem.5b01909",
language = "English (US)",
volume = "54",
pages = "11767--11775",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "24",

}

TY - JOUR

T1 - Effect of Isovalent Substitution on the Structure and Properties of the Zintl Phase Solid Solution Eu7Cd4Sb8-xAsx (2 ≤ x ≤ 5)

AU - Cooley, Joya

AU - Kazem, Nasrin

AU - Zaikina, Julia V.

AU - Fettinger, James C.

AU - Kauzlarich, Susan M.

PY - 2015/11/25

Y1 - 2015/11/25

N2 - A novel Zintl phase structure type, Eu7Cd4Sb8-xAsx (x = 2, 3, 4, and 5), with the general formula Eu7Cd4Pn8 (Pn = mixed occupancy Sb and As), was synthesized by molten tin flux reaction. Its structure was determined using single-crystal X-ray diffraction methods. This structure type is only preserved for 2 ≤ x ≤ 5 under our experimental conditions, and efforts to synthesize samples with x <2 or x > 5 resulted in other structure types. The mixed occupancy Sb and As can be thought of as a pseudoatom whose ideal size, in this range of Sb/As ratios, fits the structure. The title phase crystallizes in the I-centered monoclinic space group I2/m (No. 12, Z = 4) with unit cell parameters ranging as follows: a = 19.7116(17)-19.4546(13) Å, b = 4.6751(4)-4.6149(3) Å, c = 24.157(2)-23.871(15) Å, and β = 95.8798(1)-96.016(5)°, depending on the Sb/As ratio. The structure can be described as parallel double pentagonal tubes resulting from Cd-Pn and Pn-Pn bonding. These double pentagons are formed through corner sharing of the Cd-centered CdPn4 tetrahedra and a Pn-Pn interaction from two adjacent CdPn4 tetrahedra. This structure type is closely related to the Sr11Cd6Sb12 structure type as both share the same bonding features of Pn-Pn bonding and double pentagonal tubes. Electron microprobe analysis confirms the composition of these new Zintl solid solution phases. The As exhibits preferential substitution on specific sites, and site specificity trends are supported by lowest energy models from theoretical calculations. Theoretical calculations also predict that Sb-rich compounds should be metallic or semimetallic and that they should become more insulating as As content increases. Members of the solid-solution order ferromagnetically between 5 and 6 K and exhibit relatively low electrical resistivity between 50 and 300 K, ranging from ∼0.57 to ∼26 mΩ·cm, increasing with increasing As content.

AB - A novel Zintl phase structure type, Eu7Cd4Sb8-xAsx (x = 2, 3, 4, and 5), with the general formula Eu7Cd4Pn8 (Pn = mixed occupancy Sb and As), was synthesized by molten tin flux reaction. Its structure was determined using single-crystal X-ray diffraction methods. This structure type is only preserved for 2 ≤ x ≤ 5 under our experimental conditions, and efforts to synthesize samples with x <2 or x > 5 resulted in other structure types. The mixed occupancy Sb and As can be thought of as a pseudoatom whose ideal size, in this range of Sb/As ratios, fits the structure. The title phase crystallizes in the I-centered monoclinic space group I2/m (No. 12, Z = 4) with unit cell parameters ranging as follows: a = 19.7116(17)-19.4546(13) Å, b = 4.6751(4)-4.6149(3) Å, c = 24.157(2)-23.871(15) Å, and β = 95.8798(1)-96.016(5)°, depending on the Sb/As ratio. The structure can be described as parallel double pentagonal tubes resulting from Cd-Pn and Pn-Pn bonding. These double pentagons are formed through corner sharing of the Cd-centered CdPn4 tetrahedra and a Pn-Pn interaction from two adjacent CdPn4 tetrahedra. This structure type is closely related to the Sr11Cd6Sb12 structure type as both share the same bonding features of Pn-Pn bonding and double pentagonal tubes. Electron microprobe analysis confirms the composition of these new Zintl solid solution phases. The As exhibits preferential substitution on specific sites, and site specificity trends are supported by lowest energy models from theoretical calculations. Theoretical calculations also predict that Sb-rich compounds should be metallic or semimetallic and that they should become more insulating as As content increases. Members of the solid-solution order ferromagnetically between 5 and 6 K and exhibit relatively low electrical resistivity between 50 and 300 K, ranging from ∼0.57 to ∼26 mΩ·cm, increasing with increasing As content.

UR - http://www.scopus.com/inward/record.url?scp=84951311168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84951311168&partnerID=8YFLogxK

U2 - 10.1021/acs.inorgchem.5b01909

DO - 10.1021/acs.inorgchem.5b01909

M3 - Article

AN - SCOPUS:84951311168

VL - 54

SP - 11767

EP - 11775

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 24

ER -