Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells

Fan Fan, Michael J. Gray, Nikolaos A. Dallas, Anthony D. Yang, George Van Buren, E. Ramsay Camp, Lee M. Ellis

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Vascular endothelial growth factor (VEGF) is induced by stress. We determined whether chemotherapy (genotoxic stress) could induce expression of VEGF and VEGF receptors (VEGFR) in human colorectal cancer cells. The colorectal cancer cell lines HT29, RKO, and HCT116 were acutely exposed to increasing doses of oxaliplatin or 5-fluorouracil for 2, 6, and 24 h in vitro. Expression of VEGF ligand family members, VEGFRs, and signaling intermediates was determined by reverse transcription-PCR and Northern and Western blotting. The effect of oxaliplatin on VEGF-A transcriptional activity was determined by promoter assays. Acute exposure of human colorectal cancer cells to oxaliplatin led to a marked induction of VEGF-A mRNA and protein, whereas 5-fluorouracil alone or when added to oxaliplatin did not cause a further increase in VEGF levels. VEGF-A promoter activity was induced by oxaliplatin exposure. Expression of VEGF-C, placental growth factor, VEGFR-1, and neuropilin-1 levels were also increased when cells were treated with oxaliplatin. Oxaliplatin led to an increase in Akt and Src activation in HT29 cells. In contrast, Akt activation did not change in RKO cells whereas phospho-Src and phospho-p44/42 mitogen-activated protein kinase was dramatic increased by oxaliplatin. Inhibition of Akt or Src activation with wortmannin or PP2 blocked induction of VEGF-A by oxaliplatin in HT29 or RKO cells, respectively. VEGFRs may reflect the adaptive stress responses by which tumor cells attempt to protect themselves from genotoxic stress. Neutralization of prosurvival responses with anti-VEGF therapy might explain, in part, some of the beneficial effects of anti-VEGF therapy when added to chemotherapy.

Original languageEnglish (US)
Pages (from-to)3064-3070
Number of pages7
JournalMolecular Cancer Therapeutics
Volume7
Issue number9
DOIs
StatePublished - 2008
Externally publishedYes

Fingerprint

oxaliplatin
Vascular Endothelial Growth Factor A
Colorectal Neoplasms
Fluorouracil
DNA Damage
Neuropilin-1
Vascular Endothelial Growth Factor C
Drug Therapy
HT29 Cells
Vascular Endothelial Growth Factor Receptor
Growth Factor Receptors

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells. / Fan, Fan; Gray, Michael J.; Dallas, Nikolaos A.; Yang, Anthony D.; Van Buren, George; Camp, E. Ramsay; Ellis, Lee M.

In: Molecular Cancer Therapeutics, Vol. 7, No. 9, 2008, p. 3064-3070.

Research output: Contribution to journalArticle

Fan, Fan ; Gray, Michael J. ; Dallas, Nikolaos A. ; Yang, Anthony D. ; Van Buren, George ; Camp, E. Ramsay ; Ellis, Lee M. / Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells. In: Molecular Cancer Therapeutics. 2008 ; Vol. 7, No. 9. pp. 3064-3070.
@article{240f5f8cf15748fb809055a1f088e13d,
title = "Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells",
abstract = "Vascular endothelial growth factor (VEGF) is induced by stress. We determined whether chemotherapy (genotoxic stress) could induce expression of VEGF and VEGF receptors (VEGFR) in human colorectal cancer cells. The colorectal cancer cell lines HT29, RKO, and HCT116 were acutely exposed to increasing doses of oxaliplatin or 5-fluorouracil for 2, 6, and 24 h in vitro. Expression of VEGF ligand family members, VEGFRs, and signaling intermediates was determined by reverse transcription-PCR and Northern and Western blotting. The effect of oxaliplatin on VEGF-A transcriptional activity was determined by promoter assays. Acute exposure of human colorectal cancer cells to oxaliplatin led to a marked induction of VEGF-A mRNA and protein, whereas 5-fluorouracil alone or when added to oxaliplatin did not cause a further increase in VEGF levels. VEGF-A promoter activity was induced by oxaliplatin exposure. Expression of VEGF-C, placental growth factor, VEGFR-1, and neuropilin-1 levels were also increased when cells were treated with oxaliplatin. Oxaliplatin led to an increase in Akt and Src activation in HT29 cells. In contrast, Akt activation did not change in RKO cells whereas phospho-Src and phospho-p44/42 mitogen-activated protein kinase was dramatic increased by oxaliplatin. Inhibition of Akt or Src activation with wortmannin or PP2 blocked induction of VEGF-A by oxaliplatin in HT29 or RKO cells, respectively. VEGFRs may reflect the adaptive stress responses by which tumor cells attempt to protect themselves from genotoxic stress. Neutralization of prosurvival responses with anti-VEGF therapy might explain, in part, some of the beneficial effects of anti-VEGF therapy when added to chemotherapy.",
author = "Fan Fan and Gray, {Michael J.} and Dallas, {Nikolaos A.} and Yang, {Anthony D.} and {Van Buren}, George and Camp, {E. Ramsay} and Ellis, {Lee M.}",
year = "2008",
doi = "10.1158/1535-7163.MCT-08-0615",
language = "English (US)",
volume = "7",
pages = "3064--3070",
journal = "Molecular Cancer Therapeutics",
issn = "1535-7163",
publisher = "American Association for Cancer Research Inc.",
number = "9",

}

TY - JOUR

T1 - Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells

AU - Fan, Fan

AU - Gray, Michael J.

AU - Dallas, Nikolaos A.

AU - Yang, Anthony D.

AU - Van Buren, George

AU - Camp, E. Ramsay

AU - Ellis, Lee M.

PY - 2008

Y1 - 2008

N2 - Vascular endothelial growth factor (VEGF) is induced by stress. We determined whether chemotherapy (genotoxic stress) could induce expression of VEGF and VEGF receptors (VEGFR) in human colorectal cancer cells. The colorectal cancer cell lines HT29, RKO, and HCT116 were acutely exposed to increasing doses of oxaliplatin or 5-fluorouracil for 2, 6, and 24 h in vitro. Expression of VEGF ligand family members, VEGFRs, and signaling intermediates was determined by reverse transcription-PCR and Northern and Western blotting. The effect of oxaliplatin on VEGF-A transcriptional activity was determined by promoter assays. Acute exposure of human colorectal cancer cells to oxaliplatin led to a marked induction of VEGF-A mRNA and protein, whereas 5-fluorouracil alone or when added to oxaliplatin did not cause a further increase in VEGF levels. VEGF-A promoter activity was induced by oxaliplatin exposure. Expression of VEGF-C, placental growth factor, VEGFR-1, and neuropilin-1 levels were also increased when cells were treated with oxaliplatin. Oxaliplatin led to an increase in Akt and Src activation in HT29 cells. In contrast, Akt activation did not change in RKO cells whereas phospho-Src and phospho-p44/42 mitogen-activated protein kinase was dramatic increased by oxaliplatin. Inhibition of Akt or Src activation with wortmannin or PP2 blocked induction of VEGF-A by oxaliplatin in HT29 or RKO cells, respectively. VEGFRs may reflect the adaptive stress responses by which tumor cells attempt to protect themselves from genotoxic stress. Neutralization of prosurvival responses with anti-VEGF therapy might explain, in part, some of the beneficial effects of anti-VEGF therapy when added to chemotherapy.

AB - Vascular endothelial growth factor (VEGF) is induced by stress. We determined whether chemotherapy (genotoxic stress) could induce expression of VEGF and VEGF receptors (VEGFR) in human colorectal cancer cells. The colorectal cancer cell lines HT29, RKO, and HCT116 were acutely exposed to increasing doses of oxaliplatin or 5-fluorouracil for 2, 6, and 24 h in vitro. Expression of VEGF ligand family members, VEGFRs, and signaling intermediates was determined by reverse transcription-PCR and Northern and Western blotting. The effect of oxaliplatin on VEGF-A transcriptional activity was determined by promoter assays. Acute exposure of human colorectal cancer cells to oxaliplatin led to a marked induction of VEGF-A mRNA and protein, whereas 5-fluorouracil alone or when added to oxaliplatin did not cause a further increase in VEGF levels. VEGF-A promoter activity was induced by oxaliplatin exposure. Expression of VEGF-C, placental growth factor, VEGFR-1, and neuropilin-1 levels were also increased when cells were treated with oxaliplatin. Oxaliplatin led to an increase in Akt and Src activation in HT29 cells. In contrast, Akt activation did not change in RKO cells whereas phospho-Src and phospho-p44/42 mitogen-activated protein kinase was dramatic increased by oxaliplatin. Inhibition of Akt or Src activation with wortmannin or PP2 blocked induction of VEGF-A by oxaliplatin in HT29 or RKO cells, respectively. VEGFRs may reflect the adaptive stress responses by which tumor cells attempt to protect themselves from genotoxic stress. Neutralization of prosurvival responses with anti-VEGF therapy might explain, in part, some of the beneficial effects of anti-VEGF therapy when added to chemotherapy.

UR - http://www.scopus.com/inward/record.url?scp=54049103299&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54049103299&partnerID=8YFLogxK

U2 - 10.1158/1535-7163.MCT-08-0615

DO - 10.1158/1535-7163.MCT-08-0615

M3 - Article

C2 - 18790786

AN - SCOPUS:54049103299

VL - 7

SP - 3064

EP - 3070

JO - Molecular Cancer Therapeutics

JF - Molecular Cancer Therapeutics

SN - 1535-7163

IS - 9

ER -