TY - JOUR
T1 - Dynamic modeling of alpha-synuclein aggregation for the sporadic and genetic forms of Parkinson's disease
AU - Raichur, A.
AU - Vali, S.
AU - Gorin, Fredric A
PY - 2006/10/27
Y1 - 2006/10/27
N2 - Excessive accumulation of alpha synuclein (a-syn) in the brain has been implicated in several degenerative neurological disorders, most notably Parkinson's disease. The aggregation of a-syn is the major component of intraneuronal inclusions, Lewy bodies, which are neuropathological features, observed in Parkinson's disease, Lewy body dementia, and other synucleopathies. Diverse cellular events can contribute to a-syn accumulation, aggregation, and to subsequent Lewy body formation. These factors include genetic mutations of synuclein, parkin, or the deubiquitinating enzyme, ubiquitin C-terminal hydrolase (UCH-L1), leading to reduced clearance of a-syn by the ubiquitin proteasomal pathway (UPP). Furthermore, intracellular insults include environmental factors and an age-related decrement in antioxidant defense systems that increase oxidative stress and can affect either the accumulation or clearance of a-syn. We have dynamically modeled a-syn processing in normal and in several disease states; focusing upon alterations in the aggregation and clearance of a-syn as influenced by the UPP and the oxidative stress pathways. Simulation of increased oxidative stress generates a free radical profile analogous to that reported in vivo following exposure to the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Varying model parameters of oxidative stress, UPP dysfunction, or both pathways, simulate kinetics of a-syn that corresponds with the neuropathology described for the sporadic and genetic forms of Parkinson's disease. This in silico model provides a mathematical framework that enables kinetic appraisal of pathway components to better identify and validate important pharmacological targets.
AB - Excessive accumulation of alpha synuclein (a-syn) in the brain has been implicated in several degenerative neurological disorders, most notably Parkinson's disease. The aggregation of a-syn is the major component of intraneuronal inclusions, Lewy bodies, which are neuropathological features, observed in Parkinson's disease, Lewy body dementia, and other synucleopathies. Diverse cellular events can contribute to a-syn accumulation, aggregation, and to subsequent Lewy body formation. These factors include genetic mutations of synuclein, parkin, or the deubiquitinating enzyme, ubiquitin C-terminal hydrolase (UCH-L1), leading to reduced clearance of a-syn by the ubiquitin proteasomal pathway (UPP). Furthermore, intracellular insults include environmental factors and an age-related decrement in antioxidant defense systems that increase oxidative stress and can affect either the accumulation or clearance of a-syn. We have dynamically modeled a-syn processing in normal and in several disease states; focusing upon alterations in the aggregation and clearance of a-syn as influenced by the UPP and the oxidative stress pathways. Simulation of increased oxidative stress generates a free radical profile analogous to that reported in vivo following exposure to the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Varying model parameters of oxidative stress, UPP dysfunction, or both pathways, simulate kinetics of a-syn that corresponds with the neuropathology described for the sporadic and genetic forms of Parkinson's disease. This in silico model provides a mathematical framework that enables kinetic appraisal of pathway components to better identify and validate important pharmacological targets.
KW - alpha-synuclein
KW - dynamic kinetic modeling
KW - genetic mutations
KW - oxidative stress
KW - Parkinson's disease
UR - http://www.scopus.com/inward/record.url?scp=33749426753&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33749426753&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2006.06.052
DO - 10.1016/j.neuroscience.2006.06.052
M3 - Article
C2 - 16920272
AN - SCOPUS:33749426753
VL - 142
SP - 859
EP - 870
JO - Neuroscience
JF - Neuroscience
SN - 0306-4522
IS - 3
ER -