Domain Adaptation for Trauma Mortality Prediction in EHRs with Feature Disparity

Xinlu Zhangy, Shiyang Liy, Zhuowei Chengy, Rachael Callcut, Linda Petzold

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Trauma mortality prediction from electronic health records (EHRs) with machine learning models has received growing attention in medical fields, but EHRs in different hospitals and sub-medical domain populations are often scarce due to expensive collection processes or privacy issues. Domain Adaptation (DA) has emerged as a promising approach in computer vision and natural language processing to improve model performance in small data regimes by leveraging domain-invariant knowledge learned from a different yet related large source dataset. However, its applicability in trauma mortality prediction is challenging since EHRs collected from different hospital systems encounter feature disparity, i.e. distinct features between the source and target domain data. This paper demonstrates the effectiveness of three DA techniques in trauma mortality prediction, with a private encoding strategy that maps EHRs in both source and target domains with different raw features into the same latent space to alleviate feature disparity issues. Our experimental results on two real-world EHR datasets with various training data scenarios show that DA can improve mortality prediction consistently and significantly with private encoding. Finally, an ablation study manifests the importance of modeling feature disparity in DA, and 2-d t-SNE analysis explains its effectiveness.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
EditorsYufei Huang, Lukasz Kurgan, Feng Luo, Xiaohua Tony Hu, Yidong Chen, Edward Dougherty, Andrzej Kloczkowski, Yaohang Li
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1145-1152
Number of pages8
ISBN (Electronic)9781665401265
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 - Virtual, Online, United States
Duration: Dec 9 2021Dec 12 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021

Conference

Conference2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/9/2112/12/21

Keywords

  • Adversarial Learning
  • Contrastive Learning
  • Domain Adaptation
  • Electronic Health Record
  • Mortality Prediction

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Biomedical Engineering
  • Health Informatics
  • Information Systems and Management

Fingerprint

Dive into the research topics of 'Domain Adaptation for Trauma Mortality Prediction in EHRs with Feature Disparity'. Together they form a unique fingerprint.

Cite this