DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system

Dezhi Feng, Jing Su, Yi Xu, Guifang He, Chenguang Wang, Xiao Wang, Tingrui Pan, Xianting Ding, Xianqiang Mi

Research output: Contribution to journalArticlepeer-review

Abstract

Prostate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic–electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1–100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the “gold-standard” chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.

Original languageEnglish (US)
Article number33
JournalMicrosystems and Nanoengineering
Volume7
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Materials Science (miscellaneous)
  • Condensed Matter Physics
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system'. Together they form a unique fingerprint.

Cite this