TY - JOUR
T1 - DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation
AU - Jung, Yong Sam
AU - Qian, Yingjuan
AU - Chen, Xinbin
PY - 2012/2/1
Y1 - 2012/2/1
N2 - DNA polymerase eta (PolH), the product of the xeroderma pigmentosum variant (XPV) gene and a Y-family DNA polymerase, plays a pivotal role in translesion DNA synthesis. Loss of PolH leads to early onset of malignant skin cancer in XPV patients and increases UV-induced carcinogenesis. Thus, the pathways by which PolH expression and activity are controlled may be explored as a strategy to prevent UV-induced cancer. In this study, we found that Mdm2, a RING finger E3 ligase, promotes PolH degradation. Specifically, we showed that knockdown of Mdm2 increases PolH expression in both p53-proficient and -deficient cells. In addition, we showed that UV-induced PolH degradation is attenuated by Mdm2 knockdown. In contrast, ectopically expression of Mdm2 decreases PolH expression, which can be abrogated by the proteasome inhibitor MG132. Moreover, we showed that Mdm2 physically associates with PolH and promotes PolH polyubiquitination. in vivo and. in vitro. Finally, we showed that knockdown of Mdm2 increases the formation of PolH replication foci and decreases the sensitivity of cells to UV-induced lesions in a PolH-dependent manner. Taken together, we uncovered that Mdm2 serves as an E3 ligase for PolH polyubiquitination and proteasomal degradation in cells under the basal condition and in response to UV irradiation.
AB - DNA polymerase eta (PolH), the product of the xeroderma pigmentosum variant (XPV) gene and a Y-family DNA polymerase, plays a pivotal role in translesion DNA synthesis. Loss of PolH leads to early onset of malignant skin cancer in XPV patients and increases UV-induced carcinogenesis. Thus, the pathways by which PolH expression and activity are controlled may be explored as a strategy to prevent UV-induced cancer. In this study, we found that Mdm2, a RING finger E3 ligase, promotes PolH degradation. Specifically, we showed that knockdown of Mdm2 increases PolH expression in both p53-proficient and -deficient cells. In addition, we showed that UV-induced PolH degradation is attenuated by Mdm2 knockdown. In contrast, ectopically expression of Mdm2 decreases PolH expression, which can be abrogated by the proteasome inhibitor MG132. Moreover, we showed that Mdm2 physically associates with PolH and promotes PolH polyubiquitination. in vivo and. in vitro. Finally, we showed that knockdown of Mdm2 increases the formation of PolH replication foci and decreases the sensitivity of cells to UV-induced lesions in a PolH-dependent manner. Taken together, we uncovered that Mdm2 serves as an E3 ligase for PolH polyubiquitination and proteasomal degradation in cells under the basal condition and in response to UV irradiation.
KW - E3 ligase
KW - Mdm2
KW - PolH
KW - Ubiquitination
KW - UV
UR - http://www.scopus.com/inward/record.url?scp=84855850825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855850825&partnerID=8YFLogxK
U2 - 10.1016/j.dnarep.2011.10.017
DO - 10.1016/j.dnarep.2011.10.017
M3 - Article
C2 - 22056306
AN - SCOPUS:84855850825
VL - 11
SP - 177
EP - 184
JO - DNA Repair
JF - DNA Repair
SN - 1568-7864
IS - 2
ER -