Abstract
Treatment of human respiratory tract tracheobronchial epithelial cells with gas-phase cigarette smoke led to dose-dependent DNA strand breakage that was highly correlated with multiple chemical modifications of all four DNA bases. The pattern of base damage suggests attack by hydroxyl radicals (OH:). However, by far the most important base damage in quantitative terms was formation of xanthine and hypoxanthine, presumably resulting from deamination of guanine and adenine respectively. Hence, DNA damage by cigarette smoke may involve reactive nitrogen species as well as reactive oxygen species.
Original language | English (US) |
---|---|
Pages (from-to) | 179-182 |
Number of pages | 4 |
Journal | FEBS Letters |
Volume | 375 |
Issue number | 3 |
DOIs | |
State | Published - Nov 20 1995 |
Keywords
- Cigarette smoke
- DNA base modification
- DNA damage
- GC-MS
- Human respiratory tract cell
- Strand breakage
ASJC Scopus subject areas
- Biochemistry
- Biophysics
- Cell Biology
- Genetics
- Molecular Biology
- Structural Biology