TY - JOUR
T1 - Diverse forms of pulmonary hypertension remodel the arterial tree to a high shear phenotype
AU - Allen, Roblee P
AU - Schelegle, Edward S
AU - Bennett, Stephen H.
PY - 2014
Y1 - 2014
N2 - Pulmonary hypertension (PH) is associated with progressive changes in arterial network complexity. An allometric model is derived that integrates diameter branching complexity between pulmonary arterioles of generation n and the main pulmonary artery (MPA) via a power-law exponent (X) in dn = dMPA2-n/X and the arterial area ratio β = 21-2/X. Our hypothesis is that diverse forms of PH demonstrate early decrements in X independent of etiology and pathogenesis, which alters the arteriolar shear stress load from a low-shear stress (X > 2, β > 1) to a high-shear stress phenotype (X < 2, β < 1). Model assessment was accomplished by comparing theoretical predictions to retrospective morphometric and hemodynamic measurements made available from a total of 221 PH-free and PH subjects diagnosed with diverse forms (World Health Organization; WHO groups I-IV) of PH: mitral stenosis, congenital heart disease, chronic obstructive pulmonary lung disease, chronic thromboembolism, idiopathic pulmonary arterial hypertension (IPAH), familial (FPAH), collagen vascular disease, and methamphetamine exposure. X was calculated from pulmonary artery pressure (PPA), cardiac output (Q) and body weight (M), utilizing an allometric power-law prediction of X relative to a PH-free state. Comparisons of X between PAH-free and PAH subjects indicates a characteristic reduction in area that elevates arteriolar shear stress, which may contribute to mechanisms of endothelial dysfunction and injury before clinically defined thresholds of pulmonary vascular resistance and PH. We conclude that the evaluation of X may be of use in identifying reversible and irreversible phases of PH in the early course of the disease process.
AB - Pulmonary hypertension (PH) is associated with progressive changes in arterial network complexity. An allometric model is derived that integrates diameter branching complexity between pulmonary arterioles of generation n and the main pulmonary artery (MPA) via a power-law exponent (X) in dn = dMPA2-n/X and the arterial area ratio β = 21-2/X. Our hypothesis is that diverse forms of PH demonstrate early decrements in X independent of etiology and pathogenesis, which alters the arteriolar shear stress load from a low-shear stress (X > 2, β > 1) to a high-shear stress phenotype (X < 2, β < 1). Model assessment was accomplished by comparing theoretical predictions to retrospective morphometric and hemodynamic measurements made available from a total of 221 PH-free and PH subjects diagnosed with diverse forms (World Health Organization; WHO groups I-IV) of PH: mitral stenosis, congenital heart disease, chronic obstructive pulmonary lung disease, chronic thromboembolism, idiopathic pulmonary arterial hypertension (IPAH), familial (FPAH), collagen vascular disease, and methamphetamine exposure. X was calculated from pulmonary artery pressure (PPA), cardiac output (Q) and body weight (M), utilizing an allometric power-law prediction of X relative to a PH-free state. Comparisons of X between PAH-free and PAH subjects indicates a characteristic reduction in area that elevates arteriolar shear stress, which may contribute to mechanisms of endothelial dysfunction and injury before clinically defined thresholds of pulmonary vascular resistance and PH. We conclude that the evaluation of X may be of use in identifying reversible and irreversible phases of PH in the early course of the disease process.
KW - Allometry
KW - Complexity
KW - Pulmonary hypertension
UR - http://www.scopus.com/inward/record.url?scp=84905226820&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905226820&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00144.2014
DO - 10.1152/ajpheart.00144.2014
M3 - Article
C2 - 24858853
AN - SCOPUS:84905226820
VL - 307
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
SN - 1931-857X
IS - 3
ER -