Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells

Shangxin Yang, Chen Zhong, Baruch Frenkel, A Hari Reddi, Pradip Roy-Burman

Research output: Contribution to journalArticlepeer-review

121 Scopus citations


We found that bone morphogenetic protein (BMP) 7, a member of the BMP family, was strikingly up-regulated during the development of primary prostatic adenocarcinoma in the conditional Pten deletion mouse model. To determine the relevance of this finding to human prostate cancer, we examined the expression of BMPs and BMP receptors (BMPR) as well as the responsiveness to recombinant human BMP7 in a series of human prostate tumor cell lines. All prostatic cell lines tested expressed variable levels of BMP2, BMP4, and BMP7 and at least two of each type I and II BMPRs. In all cases, BMP7 induced Smad phosphorylation in a dose-dependent manner, with Smad5 activation clearly demonstrable. However, the biological responses to BMP7 were cell type specific. BPH-1, a cell line representing benign prostatic epithelial hyperplasia, was growth arrested at G1. In the bone metastasis-derived PC-3 prostate cancer cells, BMP7 induced epithelial-mesenchymal transdifferentiation with classic changes in morphology, motility, invasiveness, and molecular markers. Finally, BMP7 inhibited serum starvation-induced apoptosis in the LNCaP prostate cancer cell line and more remarkably in its bone metastatic variant C4-2B line. Each of the cell lines influenced by BMP7 was also responsive to BMP2 in a corresponding manner. The antiapoptotic activity of BMP7 in the LNCaP and C4-2B cell lines was not associated with a significant alteration in the levels of the proapoptotic protein Bax or the antiapoptotic proteins Bcl-2, Bcl-xl, and X-linked inhibitor of apoptosis. However, in C4-2B cells but not in LNCaP cells, a starvation-induced decrease in the level of survivin was counteracted by BMP7. Taken together, these findings suggest that BMPs are able to modulate the biological behavior of prostate tumor cells in diverse and cell type-specific manner and point to certain mechanisms by which these secreted signaling molecules may contribute to prostate cancer growth and metastasis.

Original languageEnglish (US)
Pages (from-to)5769-5777
Number of pages9
JournalCancer Research
Issue number13
StatePublished - Jul 1 2005

ASJC Scopus subject areas

  • Cancer Research
  • Oncology


Dive into the research topics of 'Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells'. Together they form a unique fingerprint.

Cite this